
Exercise 3.1-11. As the Example 10 of section 3.1 indicated, to find out the kernel of
the linear transformation represented by the given matrix is equivalent to find out the
solution to the corresponding linear system, say

T(~x) =


1 0 2 4
0 1 −3 −1
3 4 −6 8
0 −1 3 4

 ~x = ~0
Let us compute its reduced row echelon form as

rref


1 0 2 4 0
0 1 −3 −1 0
3 4 −6 8 0
0 −1 3 4 0

 =


1 0 2 0 0
0 1 −3 0 0
0 0 0 0 0
0 0 0 1 0

 .
Therefore the solution is 

x1

x2

x3

x4

 = t

−2
3
1
0

 ,
or in other words, the kernel is the straight line spanned by vector (−2,3,1,0)T .

Exercise 3.1-22. Since the elementary operations on the matrix corresponds to ma-
nipulating the vectors within the image of the linear transformation associated to the
matrix, we are happy to go on to compute the reduced row echelon form:

rref

 2 1 3
3 4 2
6 5 7

 =
 1 0 2

0 1 −1
0 0 0


So the image is x1 + 2x3

x2 − x3

0

 , ∀x1, x2, x3 ∈ R1.

Since we have three free variables we are certainly able to use this combination to
produce any two real numbers, the image is actuallyab

0

 , ∀a,b ∈ R1.
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Exercise 3.1-42. As the hints in the text book explained, it is straightforward to con-
vince yourself that the matrix B which makes the second reduced-row-echelon-form
consistent is, at least a matrix B satisfying{
~y ∈ R4 : B ·

[
y1 y2 y3 y4

]T
= ~0

}
=
{
~y ∈ R4 :

[
y1 −3y3 +2y4

y2 −2y3 +y4

]
=
[

0
0

]}
(1)

Here you may have noticed I was using boldface to indicate the restriction on B may
be more than equation (1). This is because we have to make sure the first two lines of
the second reduced-row-echelon-form[

x1 −x3 +8x4 = 4y3 −4y4

x2 +2x3 −2x4 = −y3 +y4

]
(2)

is is making perfect sense, or in other words solvable. But actually we don’t have to
worry about this too much, because by reduced-row-echelon form we have already ac-
knowledged the face that the only circumstance which can make it unsolvable/inconsistent
is the appearance of lines “0=1”. Why? Take system (2) as an example. The coefficient
matrix for this system is a 2× 4 matrix of full rank. This is because if it is not full rank
then we can go on using elimination to reduce it, which contradicts with the fact that
reduced-row-echelon-form is the last step of Gauss-Jordan elimination. Furthermore,
a full rank matrix means the underlying linear transformation transfers R4 onto R2.
Recall the fact that to determine if a system is solvable amounts to say to determine
the existence of pre-image of a given point in the image space. Since we know in our
case the linear transformation is already an onto map, surely the corresponding sys-
tem is solvable. This is why we can say the only way we can make a reduced system
“inconsistent” is by adding a line “0=1”.

And it is obvious that one possible1 B in (1) is[
1 0 −3 2
0 1 −2 1

]
.

In case you may have lost in this jungle of arguments, we’d better re-organize our
thought by write down the following relations

~y is in the image of the matrix A
⇐⇒∃~x, such that A~x = ~y
⇐⇒the second matrix in hints is consistent

⇐⇒(1)

1how many B can make (1) valid?
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Exercise 3.2-34. By the statement in this question we know the following equation
holds  | | | |

~v1 ~v2 ~v3 ~v4

| | | |

 ·


1
2
3
4

 =


0
0
0
0

 ,
which results the following

~v1 + 2~v2 + 3~v3 + 4~v4 = ~0

or in other words

~v4 = −
1
4
~v1 −

1
2
~v2 −

3
4
~v3.

Exercise 3.2-38.

a. By Definition 3.2.3 on page 116, we need only to verify that the vectors
{
~vi
}
, i =

1, . . . ,m span the subspace V . For ∀~x ∈ V since m is the largest number of
linearly independent vectors in V we know the equation

k∑
i=1

ri~vi + r0~x = ~0

has a non-vanishing solution (r1, . . . , rm, r0) ≠ (0, . . . ,0). Since
{
~vi
}
, i = 1, . . . ,m

are linearly independent we know r0 ≠ 0, which means ~x can be written as a linear
combination of

{
~vi
}
. This concludes part (a).

b. By choosing a basis
{
~vi
}
, i = 1, . . . ,m of V we know the matrix corresponds the

following linear transformation

T(~ei) = ~vi,0 ≤ i ≤m, T(~ei) = ~0,m+ 1 ≤ i ≤ n

is what we are looking for.

Exercise 3.2-49.We have two examples here:

A =

a b c
a b c
a b c

 , abc ≠ 0

and

B =

 1 0 −1
0 −1 1
−1 1 0



3



Exercise 3.3-39. This is due to the fact that matrix multiplication does not “magnify”
the rank. More concretely we have the following inequality

rank(TX) ≤ rank(T).

An easy explanation to this fact is the rank of T equals the dimension of its image2

therefore by multiplying a matrix from the right side is doing nothing but restricting
the input we feed T , and of course we cannot have more output. Therefore if A = BC
we know the rank of A cannot be bigger than the rank of B, which at most equals 4. So
A cannot be invertible.

Exercise 3.3-84.We write A and B as

A =

 | | | | | |
~v1 ~v2 ~v3 ~v4 ~v5 ~v6

| | | | | |

 , B =
 | | | | | |
~w1 ~w2 ~w3 ~w4 ~w5 ~w6

| | | | | |

 .
and it is easy to see

~v5 = 4~v1 + 5~v2 + 6~v4, ~w5 = 4 ~w1 + 5 ~w2 + 7 ~w4

which reminds us the fact that the vector

4
5
0
6
−1
0


is in the kernel of A, but not of B.

Exercise 3.4-27. As the Definition 3.4.3 in the textbook mentioned, we know the desired
matrix is  | | |

A~v1 A~v2 A~v3

| | |

 =
 18 0 0

9 0 0
−18 0 0

 .

Exercise 3.4-53. By the definition of coordinates we know

~x = 7

[
1
2

]
+ 11

[
3
4

]
=
[

40
58

]

2one can prove this instantly by recalling the definition of rank
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