7.1-7 By the deifnition of eigenvector we know that

$$
\vec{v} \in \operatorname{ker}\left(A-\lambda I_{n}\right)
$$

and since the kernel of matrix $A-\lambda I_{n}$ is not trivial we know it is not invertible
7.1-8 Solving the following equation

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
a \\
c
\end{array}\right]=5\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
5 \\
0
\end{array}\right],
$$

we know that all matrices in the form of

$$
\left[\begin{array}{ll}
5 & b \\
0 & d
\end{array}\right]
$$

are the desied matrices.
7.1-18 It is easy to see that for the reflection R about a plane V we have

$$
\begin{aligned}
R \vec{v} & =1 \cdot \vec{v}, \quad \forall \vec{v} \in V \\
R \vec{w} & =-1 \cdot \vec{w}, \quad \forall \vec{w} \perp V^{*}
\end{aligned}
$$

We can choose any basis of V and an orthogonormal complement of V as the basis of corresponding eigenspaces.
7.1-37 For part (a), at first we can easily see that this linear transformation is the composition of a scaling 5 and a reflection

$$
\left[\begin{array}{cc}
\frac{3}{5} & \frac{4}{5} \\
\frac{4}{5} & \frac{-3}{5}
\end{array}\right]
$$

Therefore by the exercise 18 we know the eigenvalues are $5,-5$
Part (b) is similar to exercise 2.2-17 from the textbook. It is easy to see that this reflection is about the line $2 y=x$, therefore we can easily find two eigenvectors

$$
\left[\begin{array}{ll}
2 & 1
\end{array}\right], \quad\left[\begin{array}{ll}
-1 & 2
\end{array}\right] .
$$

7.1-41 Assume we have in general 2×2 matrices

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

then the requirement on A is nothing but

$$
\begin{aligned}
a+b & =c+d \\
a+2 b & =c+2 d
\end{aligned} \Rightarrow b=d, a=c
$$

Therefore in general

$$
A=a \cdot\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]+c \cdot\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

7.2-12 This question is just pure calculation:

$$
\operatorname{det}\left|\begin{array}{cccc}
2-\lambda & -2 & 0 & 0 \\
1 & -1-\lambda & 0 & 0 \\
0 & 0 & 3-\lambda & -4 \\
0 & 0 & 2 & -3-\lambda
\end{array}\right|=\lambda(\lambda-1)^{2}(\lambda+1)
$$

Therefore the eigenvalues are $0,+1,-1$.
7.2-32 Again we do the following calculation at first

$$
\operatorname{det}\left|\begin{array}{ccc}
-\lambda & 1 & 0 \\
0 & -\lambda & 1 \\
k & 3 & -\lambda
\end{array}\right|=-\lambda^{3}+3 \lambda+k
$$

Now let us analyze the property of function $g(\lambda)=\lambda^{3}-3 \lambda$. Since $g^{\prime}(\lambda)=3\left(\lambda^{2}-1\right)$ has two zeros, -1 and 1, we know this function has two local extremums, $g(-1)=2$ and $g(1)=-2$. Therefore by drawing the graph of function $g(\lambda)$ we know that as long as we have $-2<k<2$ the graph will intersect with x-axis at three distinct points.
7.2-40 Recall the way we compute the product of two matrices:

$$
\operatorname{tr}(A B)=\sum_{i=0}^{n}\left(\sum_{j=0}^{n} a_{i j} b_{j i}\right)=\sum_{j=0}^{n}\left(\sum_{i=}^{n} b_{i j} a_{j i}\right)=\operatorname{tr}(B A)
$$

7.2-42 By exercise 7.2-40 we have

$$
\operatorname{tr}\left((A+B)^{2}\right)=\operatorname{tr}\left(A^{2}+B^{2}\right)+2 \operatorname{tr}(B A)=\operatorname{tr}\left(A^{2}\right)+\operatorname{tr}\left(B^{2}\right)
$$

7.2-47 Assume

$$
M=\left[\begin{array}{ll}
\overrightarrow{v_{1}} & \overrightarrow{v_{2}}
\end{array}\right]
$$

then we have

$$
A M=\left[\begin{array}{ll}
A \overrightarrow{v_{1}} & A \overrightarrow{v_{2}}
\end{array}\right]=\left[\begin{array}{ll}
2 \overrightarrow{v_{1}} & 3 \overrightarrow{v_{2}}
\end{array}\right]
$$

Therefore, the existence of such non-zero matrices M is equivalent to the fact that A has 2 and/or 3 as eigenvalues.

