1. (15 points) Find the trigonometric polynomial \(p(t) = a + b \sin t + c \cos t \) of degree 1 which best fits the data:

<table>
<thead>
<tr>
<th>(t)</th>
<th>(y(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>(\pi/2)</td>
<td>0</td>
</tr>
<tr>
<td>(\pi)</td>
<td>0</td>
</tr>
<tr>
<td>(3\pi/2)</td>
<td>0</td>
</tr>
<tr>
<td>(2\pi)</td>
<td>0</td>
</tr>
</tbody>
</table>
2. *(15 points)* For the hyperbola

\[7x_1^2 - 6x_1x_2 - x_2^2 = 8 \]

find:

(a) the principal axes,

(b) the equation of the hyperbola in the coordinate system given by the principal axes, and

(c) the asymptotes. *[Hint. The asymptotes of a hyperbola \(q(\vec{x}) = 1 \) are the diagonals of the rectangle whose vertices are]*

\[
\begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix} = \begin{bmatrix}
 \frac{\pm 1}{\sqrt{|\lambda_1|}} \\
 \frac{\pm 1}{\sqrt{|\lambda_2|}}
\end{bmatrix}
\]

in \(c_1-c_2 \) coordinates (principal axes coordinates).]
(This page intentionally left blank.)
3. (15 points) Consider the matrix

\[
A = \begin{bmatrix}
0 & 0 & 0 \\
-2 & 1 & 1 \\
0 & -1 & 1
\end{bmatrix}
\]

(a) Find all the (real or complex) eigenvalues of \(A\).

(b) Diagonalize the matrix \(A\) (over the complex numbers, if necessary).
4. (20 points) Consider the space $\mathbb{R}^{2 \times 2}$ of 2×2 matrices. Recall that the standard basis of $\mathbb{R}^{2 \times 2}$ is given by $\mathcal{E} = \{E_{11}, E_{12}, E_{21}, E_{22}\}$.

Consider also the linear transformation $L : \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ given by

$$L(A) = \frac{1}{2}(A + A^T).$$

(a) Find the matrix $M = [L]_\mathcal{E}$ (M is symmetric!).

(b) Assume as a fact that the linear transformation L is the orthogonal projection\(^1\) onto some subspace $\mathcal{S} \subset \mathbb{R}^{2 \times 2}$. Find a basis \mathcal{B} for \mathcal{S}. [Hint. L must be the orthogonal projection onto its own image, so start by finding a basis for $\text{Im}(M)$.]

(c) Find an orthonormal basis \mathcal{U} for \mathcal{S}^\perp (the orthogonal complement of the subspace \mathcal{S} with respect to the inner product in $\mathbb{R}^{2 \times 2}$). [Hint. Since L is an orthogonal projection, $\mathcal{S}^\perp = \text{Ker}(L)$, so start by finding a basis for $\text{Ker}(M)$].

(d) Write down a formula for the orthogonal projection $P : \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ onto \mathcal{S}^\perp. [Hint. The orthonormal basis \mathcal{U} of (c) might help.]

\(^1\)With respect to the inner product $\langle A, B \rangle = \text{Trace}(A^T B)$ in $\mathbb{R}^{2 \times 2}$.

5
5. **TRUE OR FALSE.** (5 points each) Justify your answers!

(a) If all the (real or complex) eigenvalues of A are zero, then A is the zero matrix.

(b) If A is a (square) skew-symmetric matrix, then $\det(A) = 0$.
(c) If A, B are symmetric matrices, so is their product AB.

(d) If $A_{n \times n}$ is diagonalizable (over the real numbers) then A is similar to a symmetric matrix.
(e) If $A^2 = 0$ for a 10×10 matrix A, then the inequality $\text{rank}(A) \leq 5$ must hold. [Hint. Justify the following first: for such an A we have $\text{Im}(A) \subset \text{Ker}(A)$. After that, the rank-nullity theorem may help.]

(f) If A is a symmetric matrix and $\vec{x} \in \text{Ker}(A)$, $\vec{y} \in \text{Im}(A)$ then $\vec{x} \perp \vec{y}$. [Hint. Use the fundamental theorem of linear algebra, or else do a direct calculation.]
(g) There is a symmetric matrix A such that $A \neq 0$ and $A^2 = 0$.
[Hint. How does A being symmetric help?]