(8) The formula $AB =$	BA holds for all $n \times n$ mat	trices A and B
T F	rare	(_/

(9) If the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent in \mathbb{R}^n then they must form a basis for \mathbb{R}^n . Same dim.

(11) If A is a 3×4 matrix and B is a 4×5 matrix then AB is a 5×3 matrix.

(12) If $2\vec{u} + 3\vec{v} + 4\vec{w} = 5\vec{u} + 6\vec{v} + 7\vec{w}$ then the vectors \vec{u}, \vec{v} , and \vec{w} must be linearly dependent. \mathbf{F} u+v+w=0

(13) There is a matrix
$$A$$
 such that $A\begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$.

There is a matrix A such that $A\begin{bmatrix} -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$.

Any when A is a function of A is a function of A in A in

(14) The function $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} y \\ 1 \end{bmatrix}$ is a linear transformation. 0 -> 0 +0

(15) The kernel of any invertible matrix consists of the zero vector only.

The kernel of any invertible matrix consists of the zero vector only.

Some as
$$\text{NCF} = \text{Im}$$

(16) The system
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 0 & 0 & 0 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \text{ is inconsistent.}$$

$$\text{Last row SayS} \quad \text{T}$$

(17) There is an invertible matrix A such that $A^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$. rank = 1