| (28) If the vector \vec{u} is a linear of \vec{u} and \vec{v} . | combination of \vec{v} and \vec{w} then t | he vector \vec{w} must be a linear combination | |---|---|--| | | 7 | | (29) If matrices A and B and both invertible then the matrix $$A + B$$ must be invertible too. $$T = A \qquad B = -I_{M}$$ $$\begin{bmatrix} a \end{bmatrix} \qquad A \nmid B = C$$ (30) The vectors of the form $$\begin{bmatrix} a \\ b \\ 0 \\ a \end{bmatrix}$$ (where a and b are arbitrary real numbers) form a subspace of \mathbb{R}^4 . (31) There exists a $$2 \times 2$$ matrix A such that $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $A \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. There exists a 2×2 matrix A such that $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $A \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. There exists a 2×2 matrix A such that $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $A \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. (32) There is a matrix $$A$$ such that $A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$. There is a matrix A such that $A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$. (33) If a subspace $$V$$ of \mathbb{R}^n contains none of the standard vectors $\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}$ then V consists of the T (34) If A and B are any two $$3 \times 3$$ matrices of rank 2 then A can be transformed into B by means of elementary row operations. (35) $$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}^3 = \begin{bmatrix} 1 & 3k \\ 0 & 1 \end{bmatrix}$$ for all real numbers k . T F Mult Py (36) If a subspace $$V$$ of \mathbb{R}^3 contains the standard vectors $\vec{e_1}, \vec{e_2}$, and $\vec{e_3}$ then V must be \mathbb{R}^3 . The standard vectors $$e_1, e_2$$, and e_3 then V must be the standard vectors e_1, e_2 , and e_3 then V must be the standard vectors e_1, e_2, e_3 and e_3 then e_3, e_4 and e_3 then e_3, e_4 and e_4, e_3 then e_4, e_4, e_5 and e_5