(28) If the vector \vec{u} is a linear of \vec{u} and \vec{v} .	combination of \vec{v} and \vec{w} then t	he vector \vec{w} must be a linear combination
	7	

(29) If matrices A and B and both invertible then the matrix
$$A + B$$
 must be invertible too.

$$T = A \qquad B = -I_{M}$$

$$\begin{bmatrix} a \end{bmatrix} \qquad A \nmid B = C$$

(30) The vectors of the form
$$\begin{bmatrix} a \\ b \\ 0 \\ a \end{bmatrix}$$
 (where a and b are arbitrary real numbers) form a subspace of \mathbb{R}^4 .

(31) There exists a
$$2 \times 2$$
 matrix A such that $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $A \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

There exists a 2×2 matrix A such that $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $A \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

There exists a 2×2 matrix A such that $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $A \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

(32) There is a matrix
$$A$$
 such that $A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$.

There is a matrix A such that $A \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$.

(33) If a subspace
$$V$$
 of \mathbb{R}^n contains none of the standard vectors $\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}$ then V consists of the T

(34) If A and B are any two
$$3 \times 3$$
 matrices of rank 2 then A can be transformed into B by means of elementary row operations.

(35)
$$\begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}^3 = \begin{bmatrix} 1 & 3k \\ 0 & 1 \end{bmatrix}$$
 for all real numbers k .

T

F

Mult

Py

(36) If a subspace
$$V$$
 of \mathbb{R}^3 contains the standard vectors $\vec{e_1}, \vec{e_2}$, and $\vec{e_3}$ then V must be \mathbb{R}^3 .

The standard vectors
$$e_1, e_2$$
, and e_3 then V must be the standard vectors e_1, e_2 , and e_3 then V must be the standard vectors e_1, e_2, e_3 and e_3 then e_3, e_4 and e_3 then e_3, e_4 and e_4, e_3 then e_4, e_4, e_5 and e_5