110.202 Linear Algebra Final Solutions

1. (20pts) Let

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

(a) Find an orthogonal matrix S and a diagonal matrix D such that $S^{-1} A S=D$.
(b) Find a formula for the entries of A^{t}, where t is a positive integer. Also find the vector $\lim _{t \rightarrow \infty} A^{t}\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$.
[Solution]
(a) Let $f_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{3}\right)=\operatorname{det}\left(\left[\begin{array}{ccc}0-\lambda & 1 & 1 \\ 1 & 0-\lambda & 1 \\ 1 & 1 & 0-\lambda\end{array}\right]\right)=$ $-\lambda^{3}+3 \lambda+2=-(\lambda-2)(\lambda+1)^{2}=0$. We have the eigenvalues are 2 with multiplicity 1 and -1 with multiplicity 2 . For $\lambda_{1}=1$, the eigenspace

$$
\begin{aligned}
E_{2} & =\operatorname{ker}\left(\left[\begin{array}{ccc}
0-2 & 1 & 1 \\
1 & 0-2 & 1 \\
1 & 1 & 0-2
\end{array}\right]\right) \\
& =\operatorname{ker}\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right) \\
& =\operatorname{ker}\left(\left[\begin{array}{lll}
1 & 0 & -1 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right]\right) \\
& =\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Therefore, $\left\{\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ forms an orthonormal basis of E_{2}.
For $\lambda_{2}=-1$, the eigenspace

$$
\begin{aligned}
E_{-1} & =\operatorname{ker}\left(\left[\begin{array}{ccc}
0-(-1) & 1 & 1 \\
& 1 & 0-(-1) \\
1 & 1 & 0-(-1)
\end{array}\right]\right) \\
& =\operatorname{ker}\left(\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\right) \\
& =\operatorname{ker}\left(\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right) \\
& =\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

Therefore, $\vec{v}_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ form a eigenbasis of E_{0}. Using Gram-schmidt process on \vec{v}_{1} and \vec{v}_{2} to get an orthonormal eigenbasis \vec{w}_{1} and \vec{w}_{2} for E_{0}, we have

$$
\vec{w}_{1}=\frac{\vec{v}_{1}}{\left\|\vec{v}_{1}\right\|}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

and, with $\vec{u}_{2}=\vec{v}_{2}-\left(\vec{w}_{1} \cdot \vec{v}_{2}\right) \vec{w}_{1}=\left[\begin{array}{c}-\frac{1}{2} \\ -\frac{1}{2} \\ 1\end{array}\right]$ and $\left\|\vec{u}_{2}\right\|=$ $\left\|\left[\begin{array}{c}-\frac{1}{2} \\ -\frac{1}{2} \\ 1\end{array}\right]\right\|=\frac{\sqrt{6}}{2}$ on hand, we have

$$
\begin{aligned}
\vec{w}_{2} & =\frac{\vec{v}_{2}-\left(\vec{w}_{1} \cdot \vec{v}_{2}\right) \vec{w}_{1}}{\left\|\vec{v}_{2}-\left(\vec{w}_{1} \cdot \vec{v}_{2}\right) \vec{w}_{1}\right\|}=\frac{\vec{u}_{2}}{\left\|\vec{u}_{2}\right\|} \\
& =\frac{2}{\sqrt{6}}\left(\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-\frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}}
\end{array}\right] .
\end{aligned}
$$

Set $S=\left[\begin{array}{ccc}\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}\end{array}\right]$ and $D=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$. We have S is orthogonal and D is diagonal. Therefore, we have $D=S^{-1} A S$ where S is orthogonal and D is diagonal.
(b) From (a), we have $A=S D S^{-1}$. Since S is orthogonal, we have $S^{-1}=S^{T}$. Hence, for a positive integer t,

$$
\begin{aligned}
& A^{t} \\
= & S D^{t} S^{-1}=S D^{t} S^{T} \\
= & {\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}}
\end{array}\right]\left[\begin{array}{ccc}
2^{t} & 0 & 0 \\
0 & (-1)^{t} & 0 \\
0 & 0 & (-1)^{t}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}}
\end{array}\right] } \\
= & {\left[\begin{array}{ccc}
\frac{1}{3}\left(2^{t}+2(-1)^{t}\right) & \frac{1}{3}\left(2^{t}-(-1)^{t}\right) & \frac{1}{3}\left(2^{t}-(-1)^{t}\right) \\
\frac{1}{3}\left(2^{t}-(-1)^{t}\right) & \frac{1}{3}\left(2^{t}+2(-1)^{t}\right) & \frac{1}{3}\left(2^{t}-(-1)^{t}\right) \\
\frac{1}{3}\left(2^{t}-(-1)^{t}\right) & \frac{1}{3}\left(2^{t}-(-1)^{t}\right) & \frac{1}{3}\left(2^{t}+2(-1)^{t}\right)
\end{array}\right] . }
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} A^{t}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \\
= & \lim _{t \rightarrow \infty}\left[\begin{array}{ccc}
\frac{1}{3}\left(2^{t}+2(-1)^{t}\right) & \frac{1}{3}\left(2^{t}-(-1)^{t}\right) & \frac{1}{3}\left(2^{t}-(-1)^{t}\right) \\
\frac{1}{3}\left(2^{t}-(-1)^{t}\right) & \frac{1}{3}\left(2^{t}+2(-1)^{t}\right) & \frac{1}{3}\left(2^{t}-(-1)^{t}\right) \\
\frac{1}{3}\left(2^{t}-(-1)^{t}\right) & \frac{1}{3}\left(2^{t}-(-1)^{t}\right) & \frac{1}{3}\left(2^{t}+2(-1)^{t}\right)
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right] \\
= & \lim _{t \rightarrow \infty}\left[\begin{array}{c}
(-1)^{t} \\
0 \\
-(-1)^{t}
\end{array}\right] .
\end{aligned}
$$

That means the limit does not exist since you have two different limit points $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.
2. (20pts) Let

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right]
$$

(a) Find a singular value decomposition for A.
(b) Describe the image of the unit circle under the linear transformation $T(\vec{x})=A \vec{x}$.
[Solution]
(a) The singular values are the square roots of the eigenvalues of $A^{T} A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. Let $f_{A^{T} A}(\lambda)=\operatorname{det}\left(A^{T} A-\lambda I_{2}\right)=$ $\operatorname{det}\left(\left[\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right]\right)=(\lambda-3)(\lambda-1)=0$. We have the eigenvalues of $A^{T} A$ are $\lambda_{1}=3$ and $\lambda_{2}=1$. Therefore, the singular values of A are

$$
\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{3}
$$

and

$$
\sigma_{2}=\sqrt{\lambda_{2}}=1
$$

For $\sigma_{1}=\sqrt{3}$, the eigenspace $E_{3}=\operatorname{ker}\left(\left[\begin{array}{cc}2-3 & 1 \\ 1 & 2-3\end{array}\right]\right)=$ $\operatorname{ker}\left(\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$. Therefore, the nonzero unit vector

$$
\vec{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

forms an orthonormal basis of E_{3}. For $\sigma_{2}=1$, the eigenspace
$E_{1}=\operatorname{ker}\left(\left[\begin{array}{cc}2-1 & 1 \\ 1 & 2-1\end{array}\right]\right)=\operatorname{ker}\left(\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.
Therefore, the nonzero unit vector

$$
\vec{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

forms an orthonormal basis of E_{1}. Let

$$
\begin{aligned}
\vec{u}_{1} & =\frac{1}{\sigma_{1}} A \vec{v}_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right]\left(\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\frac{1}{\sqrt{6}} \\
\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{u}_{2} & =\frac{1}{\sigma_{2}} A \vec{v}_{2}=\frac{1}{1}\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right]\left(\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right] .
\end{aligned}
$$

Since A is a 3×2 matrix, we know that U will be a 3×3 matrix. So, we need to expand $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ into a orthonormal basis of \mathbb{R}^{3}. That means we need to find a \vec{u}_{3} such that \vec{u}_{1}, \vec{u}_{2} and \vec{u}_{3} form an orthonormal basis of \mathbb{R}^{3}. Choose $\vec{w}_{3}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. Obviously, \vec{w}_{3} is not a linear combination of \vec{u}_{1} and \vec{u}_{2}. So, \vec{u}_{1}, \vec{u}_{2} and \vec{w}_{3} form a basis of \mathbb{R}^{3}. Since \vec{u}_{1} and \vec{u}_{2} are orthogonal and unit vectors already. We use Gram-Schmidt process on \vec{w}_{3} to get

$$
\vec{u}_{3}=\frac{\vec{w}_{3}-\left(\vec{u}_{1} \cdot \vec{w}_{3}\right) \vec{u}_{1}-\left(\vec{u}_{2} \cdot \vec{w}_{3}\right) \vec{u}_{2}}{\left\|\vec{w}_{3}-\left(\vec{u}_{1} \cdot \vec{w}_{3}\right) \vec{u}_{1}-\left(\vec{u}_{2} \cdot \vec{w}_{3}\right) \vec{u}_{2}\right\|}=\left[\begin{array}{c}
-\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{3}}
\end{array}\right] .
$$

And, we have \vec{u}_{1}, \vec{u}_{2} and \vec{u}_{3} form an orthonormal basis of \mathbb{R}^{3}. Let

$$
\begin{gathered}
V=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
U=\left[\begin{array}{lll}
\vec{u}_{1} & \vec{u}_{2} & \vec{u}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}}
\end{array}\right]
\end{gathered}
$$

and

$$
\Sigma=\left[\begin{array}{cc}
\sigma_{1} & 0 \\
0 & \sigma_{2} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right] .
$$

Therefore, we get a singular value decomposition(SVD) for $A=U \Sigma V^{T}$.
(b) From (a), we have

$$
\begin{aligned}
T\left(\vec{v}_{1}\right) & =A \vec{v}_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right]\left(\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\sqrt{2} \\
\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
T\left(\vec{v}_{2}\right) & =A \vec{v}_{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1 \\
1 & 0
\end{array}\right]\left(\frac{1}{\sqrt{2}}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

The unit circle in \mathbb{R}^{2} consists of all vectors of the form

$$
\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \text { where } c_{1}^{2}+c_{2}^{2}=1 .
$$

Therefore, the image of the unit circle under T consists of the vectors

$$
T(\vec{x})=c_{1} T\left(\vec{v}_{1}\right)+c_{2} T\left(\vec{v}_{2}\right) \text { where } c_{1}^{2}+c_{2}^{2}=1
$$

That means
$T(\vec{x})=c_{1}\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \sqrt{2} \\ \frac{1}{\sqrt{2}}\end{array}\right]+c_{2}\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}}\end{array}\right]$ where $c_{1}^{2}+c_{2}^{2}=1$.
This is an ellipse with the semimajor axe is the line generated by $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \sqrt{2} \\ \frac{1}{\sqrt{2}}\end{array}\right]$ with the length $\sigma_{1}=\sqrt{3}$ and the semiminor axe is the line generated by $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}}\end{array}\right]$ with the length $\sigma_{1}=1$.
3. (10pts) Let q be a quadratic form

$$
q\left(x_{1}, x_{2}\right)=9 x_{1}^{2}-4 x_{1} x_{2}+6 x_{2}^{2} .
$$

(a) Determine the definiteness of q.
(b) Sketch the curve defined by $q\left(x_{1}, x_{2}\right)=1$. Draw and label the principal axes, label the intercepts of the curve with the principal axes, and give the formula of the curve in the coordinate system defined by the principal axes.

[Solution]

(a) Let $A=\left[\begin{array}{cc}9 & -2 \\ -2 & 6\end{array}\right]$. We have $q(\vec{x})=\vec{x} \cdot A \vec{x}$.
[Method 1]
Calculate

$$
A^{(1)}=\operatorname{det}([9])=9>0
$$

and

$$
A^{(2)}=\operatorname{det}\left(\left[\begin{array}{cc}
9 & -2 \\
-2 & 6
\end{array}\right]\right)=50>0 .
$$

By the theorem in the textbook, we have q is positive definite. [Method 2]
Let λ_{1} and λ_{2} be the two eigenvalues of A with associated eigenvectors \vec{v}_{1} and \vec{v}_{2}, respectively. We have $\lambda_{1} \lambda_{2}=\operatorname{det}(A)=$ $54-4=50>0$ and $\lambda_{1}+\lambda_{2}=\operatorname{tr}(A)=9+6=15>0$. This implies that $\lambda_{1}>0$ and $\lambda_{2}>0$. Moreover, we have

$$
q(\vec{x})=\lambda_{1} c_{1}^{2}+\lambda_{2} c_{2}^{2}
$$

where $\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}$. That means $q(\vec{x})>0$ for all $\vec{x} \neq 0$. By the definition of definiteness, A is positive definite.
(b) Let $A=\left[\begin{array}{cc}9 & -2 \\ -2 & 6\end{array}\right]$. We have $q(\vec{x})=\vec{x} \cdot A \vec{x}$. Set $0=$ $f_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{2}\right)=\operatorname{det}\left(\left[\begin{array}{cc}9-\lambda & -2 \\ -2 & 6-\lambda\end{array}\right]\right)=\lambda^{2}-$ $15 \lambda+50=(\lambda-10)(\lambda-5)$. We get the eigenvalues $\lambda_{1}=10$ and $\lambda_{2}=5$. For $\lambda_{1}=10$, the eigenspace

$$
\begin{aligned}
E_{10} & =\operatorname{ker}\left(\left[\begin{array}{cc}
9-10 & -2 \\
-2 & 6-10
\end{array}\right]\right) \\
& =\operatorname{ker}\left(\left[\begin{array}{ll}
-1 & -2 \\
-2 & -4
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right\} .
\end{aligned}
$$

Therefore, $\left\{\frac{1}{\sqrt{5}}\left[\begin{array}{c}2 \\ -1\end{array}\right]\right\}$ forms an orthonormal basis of E_{10}.
For $\lambda_{2}=5$, the eigenspace

$$
\begin{aligned}
E_{5} & =\operatorname{ker}\left(\left[\begin{array}{cc}
9-5 & -2 \\
-2 & 6-5
\end{array}\right]\right) \\
& =\operatorname{ker}\left(\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} .
\end{aligned}
$$

Therefore, $\left\{\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ forms an orthonormal basis of E_{5}.
Hence we have an orthonormal eigenbasis

$$
\vec{v}_{1}=\left[\begin{array}{c}
\frac{2}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}}
\end{array}\right] \text { and } \vec{v}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right] .
$$

Moreover, the curve can be re-written as

$$
10 c_{1}^{2}+5 c_{2}^{2}=1 .
$$

That means the curve is a ellipse in $c_{1}-c_{2}$ coordinates system where the principal axes are E_{10} and E_{5} which are generated by \vec{v}_{1} and \vec{v}_{2}, respectively. The graph is

4. (10pts) Decide whether the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

is diagonalizable. If possible, find an invertible S and a diagonal D such that $S^{-1} A S=D$.
[Solution]
Using $f_{A}(\lambda)=\operatorname{det}\left(A-\lambda I_{3}\right)=\operatorname{det}\left(\left[\begin{array}{ccc}1-\lambda & 1 & 1 \\ 0 & 1-\lambda & 0 \\ 0 & 1 & 0-\lambda\end{array}\right]\right)=$ $-(1-\lambda)^{2} \lambda=0$, we have eigenvalues are 1,1 and 0 . For $\lambda_{1}=1$, the eigenspace

$$
\begin{aligned}
E_{1} & =\operatorname{ker}\left(A-1 \cdot I_{3}\right)=\operatorname{ker}\left(\left[\begin{array}{ccc}
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 1 & -1
\end{array}\right]\right) \\
& =\operatorname{ker}\left(\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right\} .
\end{aligned}
$$

For $\lambda_{2}=0$, the eigenspace

$$
\begin{aligned}
E_{0} & =\operatorname{ker}\left(A-0 \cdot I_{3}\right)=\operatorname{ker}\left(\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 0
\end{array}\right]\right) \\
& =\operatorname{ker}\left(\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

Since $\operatorname{dim}\left(E_{1}\right)+\operatorname{dim}\left(E_{0}\right)=1+1=2<3$, we have no eigenbasis of \mathbb{R}^{3} in this case. This implies that A is not diagonalizable.
5. (10pts) Find the trigonometric function of the form

$$
f(t)=c_{0}+c_{1} \sin (t)+c_{2} \cos (t)
$$

that best fits the data points $(0,-1),\left(\frac{\pi}{2}, 2\right),(\pi, 2)$ and $\left(\frac{3 \pi}{2}, 1\right)$, using lease squares.

[Solution]

We want to find a $f(t)=c_{0}+c_{1} \sin (t)+c_{2} \cos (t)$ such that $f(0)=$ $-1, f\left(\frac{\pi}{2}\right)=2, f(\pi)=2$ and $f\left(\frac{3 \pi}{2}\right)=1$. These conditions give the
system of linear equations

$$
\left\{\begin{array}{rl}
c_{0}+c_{1} \sin (0)+c_{2} \cos (0) & =f(0) \\
c_{0}+c_{1} \sin \left(\frac{\pi}{2}\right)+ & -1 \\
c_{0}+c_{2} \cos \left(\frac{\pi}{2}\right) & =f\left(\frac{\pi}{2}\right) \\
=c_{1} \sin (\pi)+2 \\
c_{0}+c_{1} \sin \left(\frac{3 \pi}{2}\right)+c_{2} \cos (\pi) & =f(\pi)=2 \\
c_{2} \cos \left(\frac{3 \pi}{2}\right) & =f\left(\frac{3 \pi}{2}\right)=1
\end{array},\right.
$$

or,

$$
\left\{\begin{array}{rl}
c_{0}+c_{2} & =-1 \\
c_{0}+c_{1} & =2 \\
c_{0}-c_{2} & =2 \\
c_{0}-c_{1} & =1
\end{array} .\right.
$$

Let $A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right], \vec{x}=\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2}\end{array}\right]$ and $\vec{b}=\left[\begin{array}{c}-1 \\ 2 \\ 2 \\ 1\end{array}\right]$. We can
write the system as $A \vec{x}=\vec{b}$. Since $\operatorname{rref}(A)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$, we have $\operatorname{ker}(A)=\{0\}$. So, the unique least-squares solution of $A \vec{x}=\vec{b}$ is

$$
\begin{aligned}
\vec{x}^{*} & =\left(A^{T} A\right)^{-1} A^{T} \vec{b} \\
& =\left(\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
1 & 0 & -1 \\
1 & -1 & 0
\end{array}\right]\right)^{-1}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
2 \\
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{1}{4} & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & -1 \\
1 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
-1 \\
2 \\
2 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
1 \\
\frac{1}{2} \\
-\frac{3}{2}
\end{array}\right] .
\end{aligned}
$$

Moreover, the trigonometric function,

$$
f^{*}(t)=1+\frac{1}{2} \sin (t)-\frac{3}{2} \cos (t),
$$

best fits the data points $(0,-1),\left(\frac{\pi}{2}, 2\right),(\pi, 2)$ and $\left(\frac{3 \pi}{2}, 1\right)$ in the leastsquares sense.
6. (10pts) Given a matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & -1 \\
-2 & 7 & 3 & -5 \\
3 & 2 & 8 & -5
\end{array}\right]
$$

(a) Find a basis of kernel of A and $\operatorname{dim}(\operatorname{ker}(A))$.
(b) Find a basis of image of A and $\operatorname{dim}(\operatorname{im}(A))$.
[Solution]
By Gauss-Jordan elimination, we have

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & -1 \\
-2 & 7 & 3 & -5 \\
3 & 2 & 8 & -5
\end{array}\right]
$$

\longrightarrow

$$
\left[\begin{array}{llll}
1 & 0 & 2 & -1 \\
0 & 7 & 7 & -7 \\
0 & 2 & 2 & -2
\end{array}\right]
$$

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & -1 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]=\operatorname{rref}(A)
$$

(a) Assume $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \in \operatorname{ker} A$. Then we have $A \vec{x}=\overrightarrow{0}$. By

Gauss-Jordan elimination(which implies $\operatorname{ker}(A)=\operatorname{ker} \operatorname{rref}(A)$), we have

$$
\left[\begin{array}{cccc}
1 & 0 & 2 & -1 \\
0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\overrightarrow{0}
$$

Assume $x_{3}=s$ and $x_{4}=t$ for all $s, t \in \mathbb{R}$. We have solutions of the system,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 s+t \\
-s+t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
-1 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]
$$

Assume $\vec{v}_{1}=\left[\begin{array}{c}-2 \\ -1 \\ 1 \\ 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 1\end{array}\right]$. That means $\operatorname{ker}(A) \subseteq$ span $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$. Moreover, we check that

$$
A\left(\vec{v}_{1}\right)=\left[\begin{array}{cccc}
1 & 0 & 2 & -1 \\
-2 & 7 & 3 & -5 \\
3 & 2 & 8 & -5
\end{array}\right]\left[\begin{array}{c}
-2 \\
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

and

$$
A\left(\vec{v}_{2}\right)=\left[\begin{array}{cccc}
1 & 0 & 2 & -1 \\
-2 & 7 & 3 & -5 \\
3 & 2 & 8 & -5
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

This tells us that $\left\{\vec{v}_{1}, \vec{v}_{2}\right\} \subseteq \operatorname{ker}(A)$ which implies $\operatorname{ker}(A)=$ span $\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$. To check \vec{v}_{1} and \vec{v}_{2} are linearly independent, we assume that $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=0$, or

$$
0=c_{1}\left[\begin{array}{c}
-2 \\
-1 \\
1 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-2 c_{1}+c_{2} \\
-c_{1}+c_{2} \\
c_{1} \\
c_{2}
\end{array}\right]
$$

This implies that $c_{1}=c_{2}=0$. That proves that \vec{v}_{1} and \vec{v}_{2} are linearly independent. Now, we can say \vec{v}_{1}, \vec{v}_{2} form a basis of $\operatorname{ker}(A)$. And, $\operatorname{dim}(\operatorname{ker}(A))$ equals the number of vectors in a basis. So, $\operatorname{dim}(\operatorname{ker}(A))=2$.
(b) Set $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ be the column vectors of A. Set $\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \vec{w}_{4}$ be the column vectors of ref A. We know that

$$
\operatorname{im}(A)=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\} .
$$

From our reduced row-echlon form, we can read two relations of $\vec{w}_{1}, \overrightarrow{w_{2}}, \overrightarrow{w_{3}}, \overrightarrow{w_{4}}$,

$$
\vec{w}_{3}=2 \vec{w}_{1}+\vec{w}_{2}
$$

and

$$
\vec{w}_{4}=-\vec{w}_{1}-\vec{w}_{2} .
$$

This implies we have the same relation of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ which are

$$
\vec{v}_{3}=2 \vec{v}_{1}+\vec{v}_{2}
$$

and

$$
\vec{v}_{4}=-\vec{v}_{1}-\vec{v}_{2} .
$$

Therefore, we can conclude that \vec{v}_{1}, \vec{v}_{2} are linearly independent and

$$
\operatorname{im}(A)=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}
$$

Now, we can say that $\vec{v}_{1}=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 7 \\ 2\end{array}\right]$ form a basis of $\operatorname{im}(A)$. And, $\operatorname{dim}(\operatorname{im}(A))$ equals the number of vectors in a basis. So, $\operatorname{dim}(\operatorname{im}(A))=2$.
7. (10pts) Let T from \mathbb{R}^{3} to \mathbb{R}^{3} be the reflection in the plane given by the equation

$$
x_{1}+2 x_{2}+3 x_{3}=0 .
$$

(a) Find the matrix B of this transformation with respect to the basis

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

(b) Use your answer in part (a) to find the standard matrix A of T.

[Solution]

(a) Let P be the plane given by the equation $x_{1}+2 x_{2}+3 x_{3}=0$. We observe that \vec{v}_{1} and \vec{v}_{2} are both on the plane P. Since T is a reflection, it keeps \vec{v}_{1} and \vec{v}_{2} unchanged, that is, $T\left(\vec{v}_{1}\right)=\vec{v}_{1}$ and $T\left(\vec{v}_{2}\right)=\vec{v}_{2}$. And, \vec{v}_{3} is the normal vector of P. That means \vec{v}_{3} is perpendicular to the plane P. Therefore, since T is a reflection in P, we have $T\left(\vec{v}_{3}\right)=-\vec{v}_{3}$. With respect to the basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$, we have $\left[T\left(\vec{v}_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]_{\mathcal{B}}$, $\left[T\left(\vec{v}_{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]_{\mathcal{B}}$ and $\left[T\left(\vec{v}_{3}\right)\right]_{\mathcal{B}}=\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]_{\mathcal{B}}$. So

$$
B=\left[\begin{array}{lll}
{\left[T\left(\vec{v}_{1}\right)\right]_{\mathcal{B}}} & {\left[\begin{array}{ll}
\left.T\left(\vec{v}_{2}\right)\right]_{\mathcal{B}} & {\left[T\left(\vec{v}_{3}\right)\right]_{\mathcal{B}}}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] . . . ~ . ~}
\end{array}\right.
$$

(b) Write $S=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 2 & 2 \\ -1 & -1 & 3\end{array}\right]$. By the theorem in the textbook, we have $A=S B S^{-1}$. To find S^{-1}, we use Gauss-Jordan elimination on

$$
\longrightarrow
$$

\qquad

Hence,

$$
S^{-1}=\left[\begin{array}{ccc}
\frac{4}{7} & \frac{1}{7} & -\frac{2}{7} \\
-\frac{5}{14} & \frac{2}{7} & -\frac{1}{14} \\
\frac{1}{14} & \frac{1}{7} & \frac{3}{14}
\end{array}\right]
$$

and

$$
A=S B S^{-1}=\left[\begin{array}{ccc}
\frac{6}{7} & -\frac{2}{7} & -\frac{3}{7} \\
-\frac{2}{7} & \frac{3}{7} & -\frac{6}{7} \\
-\frac{3}{7} & -\frac{6}{7} & -\frac{2}{7}
\end{array}\right] .
$$

8. (10pts) Consider a linear transformation T from V to W.
(a) For $f_{1}, f_{2}, \cdots, f_{n} \in V$, if $T\left(f_{1}\right), T\left(f_{2}\right), \cdots, T\left(f_{n}\right)$ are linearly independent, show that $f_{1}, f_{2}, \cdots, f_{n}$ are linearly independent.
(b) Assume that $f_{1}, f_{2}, \cdots, f_{n}$ form a basis of V. If T is an isomorphism, show that $T\left(f_{1}\right), T\left(f_{2}\right), \cdots, T\left(f_{n}\right)$ is a basis of W.
[Solution]

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
-1 & -1 & 3 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 3 & 1 & -1 & 1 & 0 \\
0 & -2 & 4 & 1 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc|ccc}
1 & 0 & \frac{4}{3} & \frac{2}{3} & \frac{1}{3} & 0 \\
0 & 1 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} & 0 \\
0 & 0 & \frac{14}{3} & \frac{1}{3} & \frac{2}{3} & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{8}{14} & \frac{2}{14} & -\frac{4}{14} \\
0 & 1 & 0 & -\frac{5}{14} & \frac{4}{14} & -\frac{1}{14} \\
0 & 0 & 1 & \frac{1}{14} & \frac{2}{14} & \frac{3}{14}
\end{array}\right] .}
\end{aligned}
$$

(a) Assume

$$
a_{1} f_{1}+a_{2} f_{2}+\cdots+a_{n} f_{n}=\overrightarrow{0} .
$$

By applying T on both sides, we have

$$
T\left(a_{1} f_{1}+a_{2} f_{2}+\cdots+a_{n} f_{n}\right)=T(\overrightarrow{0})=\overrightarrow{0} .
$$

Since T is a linear transformation,
$a_{1} T\left(f_{1}\right)+\cdots+a_{n} T\left(f_{n}\right)=T\left(a_{1} f_{1}+\cdots+a_{n} f_{n}\right)=\overrightarrow{0}$.
Since $T\left(f_{1}\right), T\left(f_{2}\right), \cdots, T\left(f_{n}\right)$ are linearly independent, we have $a_{1}=a_{2}=\cdots=a_{n}=0$. That tells us that $f_{1}, f_{2}, \cdots, f_{n}$ are linearly independent.
(b) To show that $T\left(f_{1}\right), T\left(f_{2}\right), \cdots, T\left(f_{n}\right)$ are linearly independent, we assume $c_{1} T\left(f_{1}\right)+c_{2} T\left(f_{2}\right)+\cdots+c_{n} T\left(f_{n}\right)=0$. Hence, we have $T\left(c_{1} f_{1}+\cdots+c_{n} f_{n}\right)=0$ since T is a linear transformation. Since T is an isomorphism from V to W, we have T is invertible, that means, $\operatorname{ker}(T)=\{0\}$. This implies $c_{1} f_{1}+\cdots+c_{n} f_{n}=0$. Moreover, $f_{1}, f_{2}, \cdots, f_{n}$ form a basis of V. This condition forces that $c_{1}=c_{2}=\cdots=c_{n}=0$. So, $T\left(f_{1}\right), T\left(f_{2}\right), \cdots, T\left(f_{n}\right)$ are linearly independent. Since T is an isomorphism from V to W, we have T^{-1} is an isomorphism from W to V such that $T\left(T^{-1}(g)\right)=g$ for all $g \in W$. For all $g \in W$, we have $T^{-1}(g) \in V$. Since $f_{1}, f_{2}, \cdots, f_{n}$ form a basis of V, there exist $t_{1}, t_{2}, \cdots, t_{n}$ such that $T^{-1}(g)=t_{1} f_{1}+\cdots+t_{n} f_{n}$. Therefore, $g=T\left(T^{-1}(g)\right)=$ $T\left(t_{1} f_{1}+\cdots+t_{n} f_{n}\right)=t_{1} T\left(f_{1}\right)+\cdots t_{n} T\left(f_{n}\right)$. That means g is a linear combination of $T\left(f_{1}\right), T\left(f_{2}\right), \cdots, T\left(f_{n}\right)$. And, obviously, $T\left(f_{1}\right), T\left(f_{2}\right), \cdots, T\left(f_{n}\right)$ are all in W. Thus, we can conclude that $W=\operatorname{span}\left\{T\left(f_{1}\right), T\left(f_{2}\right), \cdots, T\left(f_{n}\right)\right\}$. So, $T\left(f_{1}\right), T\left(f_{2}\right), \cdots, T\left(f_{n}\right)$ form a basis of W

