
110.202 Linear Algebra
Final Solutions

1. (20pts) Let

A =

 0 1 1
1 0 1
1 1 0

 .
(a) Find an orthogonal matrix S and a diagonal matrix D such

that S−1AS = D.
(b) Find a formula for the entries of At, where t is a positive

integer. Also find the vector lim
t→∞

At

 1
0
−1

.
[Solution]

(a) Let fA (λ) = det (A− λI3) = det

 0− λ 1 1
1 0− λ 1
1 1 0− λ

 =

−λ3+3λ+2 = − (λ− 2) (λ+ 1)2 = 0. We have the eigenval-
ues are 2 with multiplicity 1 and −1 with multiplicity 2. For
λ1 = 1, the eigenspace

E2 = ker

 0− 2 1 1
1 0− 2 1
1 1 0− 2


= ker

 −2 1 1
1 −2 1
1 1 −2


= ker

 1 0 −1
0 1 −1
0 0 0


= span


 11
1

 .
1



2

Therefore,

 1√
3

 11
1

 forms an orthonormal basis of E2.

For λ2 = −1, the eigenspace

E−1 = ker

 0− (−1) 1 1
1 0− (−1) 1
1 1 0− (−1)


= ker

 1 1 1
1 1 1
1 1 1


= ker

 1 1 1
0 0 0
0 0 0


= span


 −11
0

 ,
 −10
1

 .

Therefore, v1 =

 −11
0

 and v2 =

 −10
1

 form a eigenbasis

of E0. Using Gram-schmidt process on v1 and v2 to get an
orthonormal eigenbasis w1 and w2 for E0, we have

w1 =
v1
kv1k =

1√
2

 −11
0



and, with u2 = v2 − (w1 · v2)w1 =
 −12−1

2
1

 and ku2k =°°°°°°
 −12−1

2
1

°°°°°° =
√
6
2
on hand, we have

w2 =
v2 − (w1 · v2)w1
kv2 − (w1 · v2)w1k =

u2
ku2k

=
2√
6

 −12−1
2
1

 =

 − 1√
6

− 1√
6

2√
6

 .
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Set S =

 1√
3
− 1√

2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

 and D =

 2 0 0
0 −1 0
0 0 −1

. We
have S is orthogonal and D is diagonal. Therefore, we have
D = S−1AS where S is orthogonal and D is diagonal.

(b) From (a), we have A = SDS−1. Since S is orthogonal, we
have S−1 = ST . Hence, for a positive integer t,

At

= SDtS−1 = SDtST

=

 1√
3
− 1√

2
− 1√

6
1√
3

1√
2
− 1√

6
1√
3

0 2√
6

 2t 0 0
0 (−1)t 0
0 0 (−1)t

 1√
3

1√
3

1√
3

− 1√
2

1√
2

0

− 1√
6
− 1√

6
2√
6


=

 1
3

¡
2t + 2 (−1)t¢ 1

3

¡
2t − (−1)t¢ 1

3

¡
2t − (−1)t¢

1
3

¡
2t − (−1)t¢ 1

3

¡
2t + 2 (−1)t¢ 1

3

¡
2t − (−1)t¢

1
3

¡
2t − (−1)t¢ 1

3

¡
2t − (−1)t¢ 1

3

¡
2t + 2 (−1)t¢

 .
Therefore,

lim
t→∞

At

 1
0
−1


= lim

t→∞

 1
3

¡
2t + 2 (−1)t¢ 1

3

¡
2t − (−1)t¢ 1

3

¡
2t − (−1)t¢

1
3

¡
2t − (−1)t¢ 1

3

¡
2t + 2 (−1)t¢ 1

3

¡
2t − (−1)t¢

1
3

¡
2t − (−1)t¢ 1

3

¡
2t − (−1)t¢ 1

3

¡
2t + 2 (−1)t¢

 1
0
−1


= lim

t→∞

 (−1)t
0

− (−1)t

 .
That means the limit does not exist since you have two dif-

ferent limit points

 1
0
−1

 and
 −10
1

.
¥

2. (20pts) Let

A =

 0 1
1 1
1 0

 .
(a) Find a singular value decomposition for A.
(b) Describe the image of the unit circle under the linear trans-

formation T (x) = Ax.
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[Solution]

(a) The singular values are the square roots of the eigenvalues

of ATA =

·
2 1
1 2

¸
. Let fATA (λ) = det

¡
ATA− λI2

¢
=

det

µ·
2− λ 1
1 2− λ

¸¶
= (λ− 3) (λ− 1) = 0. We have the

eigenvalues of ATA are λ1 = 3 and λ2 = 1. Therefore, the
singular values of A are

σ1 =
p
λ1 =

√
3

and

σ2 =
p
λ2 = 1.

For σ1 =
√
3, the eigenspace E3 = ker

µ·
2− 3 1
1 2− 3

¸¶
=

ker

µ· −1 1
1 −1

¸¶
= span

½·
1
1

¸¾
. Therefore, the nonzero

unit vector

v1 =
1√
2

·
1
1

¸
forms an orthonormal basis of E3. For σ2 = 1, the eigenspace

E1 = ker

µ·
2− 1 1
1 2− 1

¸¶
= ker

µ·
1 1
1 1

¸¶
= span

½· −1
1

¸¾
.

Therefore, the nonzero unit vector

v2 =
1√
2

· −1
1

¸
forms an orthonormal basis of E1. Let

u1 =
1

σ1
Av1 =

1√
3

 0 1
1 1
1 0

µ 1√
2

·
1
1

¸¶

=

 1√
6
2√
6
1√
6
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and

u2 =
1

σ2
Av2 =

1

1

 0 1
1 1
1 0

µ 1√
2

· −1
1

¸¶

=

 1√
2

0
− 1√

2

 .
Since A is a 3 × 2 matrix, we know that U will be a 3 × 3
matrix. So, we need to expand {u1, u2} into a orthonormal
basis of R3. That means we need to find a u3 such that u1, u2

and u3 form an orthonormal basis of R3. Choose w3 =

 01
0

.
Obviously, w3 is not a linear combination of u1 and u2. So, u1,
u2 and w3 form a basis of R3. Since u1 and u2 are orthogonal
and unit vectors already. We use Gram-Schmidt process on
w3 to get

u3 =
w3 − (u1 · w3)u1 − (u2 · w3)u2
kw3 − (u1 · w3)u1 − (u2 · w3)u2k =

 − 1√
3

1√
3

− 1√
3

 .
And, we have u1, u2 and u3 form an orthonormal basis of R3.
Let

V =
£
v1 v2

¤ · 1√
2
− 1√

2
1√
2

1√
2

¸
,

U =
£
u1 u2 u3

¤
=

 1√
6

1√
2
− 1√

3
2√
6

0 1√
3

1√
6
− 1√

2
− 1√

3


and

Σ =

 σ1 0
0 σ2
0 0

 √3 0
0 1
0 0

 .
Therefore, we get a singular value decomposition(SVD) for
A = UΣV T .



6

(b) From (a), we have

T (v1) = Av1 =

 0 1
1 1
1 0

µ 1√
2

·
1
1

¸¶

=

 1√
2√
2
1√
2


and

T (v2) = Av2 =

 0 1
1 1
1 0

µ 1√
2

· −1
1

¸¶

=

 1√
2

0
− 1√

2

 .
The unit circle in R2 consists of all vectors of the form

x = c1v1 + c2v2 where c21 + c22 = 1.

Therefore, the image of the unit circle under T consists of the
vectors

T (x) = c1T (v1) + c2T (v2) where c21 + c22 = 1.

That means

T (x) = c1

 1√
2√
2
1√
2

+ c2

 1√
2

0
− 1√

2

 where c21 + c22 = 1.

This is an ellipse with the semimajor axe is the line generated

by

 1√
2√
2
1√
2

 with the length σ1 =
√
3 and the semiminor axe

is the line generated by

 1√
2

0
− 1√

2

 with the length σ1 = 1.

¥
3. (10pts) Let q be a quadratic form

q (x1, x2) = 9x
2
1 − 4x1x2 + 6x22.

(a) Determine the definiteness of q.
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(b) Sketch the curve defined by q (x1, x2) = 1. Draw and label the
principal axes, label the intercepts of the curve with the prin-
cipal axes, and give the formula of the curve in the coordinate
system defined by the principal axes.

[Solution]

(a) Let A =
·
9 −2
−2 6

¸
. We have q (x) = x ·Ax.

[Method 1]
Calculate

A(1) = det ([9]) = 9 > 0

and

A(2) = det

µ·
9 −2
−2 6

¸¶
= 50 > 0.

By the theorem in the textbook, we have q is positive definite.
[Method 2]
Let λ1 and λ2 be the two eigenvalues of A with associated
eigenvectors v1 and v2, respectively. We have λ1λ2 = det (A) =
54− 4 = 50 > 0 and λ1 + λ2 = tr (A) = 9 + 6 = 15 > 0. This
implies that λ1 > 0 and λ2 > 0. Moreover, we have

q (x) = λ1c
2
1 + λ2c

2
2

where x = c1v1 + c2v2. That means q (x) > 0 for all x 6= 0.
By the definition of definiteness, A is positive definite.

(b) Let A =

·
9 −2
−2 6

¸
. We have q (x) = x · Ax. Set 0 =

fA (λ) = det (A− λI2) = det

µ·
9− λ −2
−2 6− λ

¸¶
= λ2 −

15λ + 50 = (λ− 10) (λ− 5). We get the eigenvalues λ1 = 10
and λ2 = 5. For λ1 = 10, the eigenspace

E10 = ker

µ·
9− 10 −2
−2 6− 10

¸¶
= ker

µ· −1 −2
−2 −4

¸¶
= span

½·
2
−1

¸¾
.
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Therefore,
½

1√
5

·
2
−1

¸¾
forms an orthonormal basis of E10.

For λ2 = 5, the eigenspace

E5 = ker

µ·
9− 5 −2
−2 6− 5

¸¶
= ker

µ·
4 −2
−2 1

¸¶
= span

½·
1
2

¸¾
.

Therefore,
½

1√
5

·
1
2

¸¾
forms an orthonormal basis of E5.

Hence we have an orthonormal eigenbasis

v1 =

· 2√
5

− 1√
5

¸
and v2 =

· 1√
5
2√
5

¸
.

Moreover, the curve can be re-written as

10c21 + 5c
2
2 = 1.

That means the curve is a ellipse in c1−c2 coordinates system
where the principal axes are E10 and E5 which are generated
by v1 and v2, respectively. The graph is

¥
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4. (10pts) Decide whether the matrix

A =

 1 1 1
0 1 0
0 1 0


is diagonalizable. If possible, find an invertible S and a diagonal
D such that S−1AS = D.

[Solution]

Using fA (λ) = det (A− λI3) = det

 1− λ 1 1
0 1− λ 0
0 1 0− λ

 =

− (1− λ)2 λ = 0, we have eigenvalues are 1, 1 and 0. For λ1 = 1, the
eigenspace

E1 = ker (A− 1 · I3) = ker
 0 1 1

0 0 0
0 1 −1


= ker

 0 1 0
0 0 1
0 0 0

 = span


 10
0

 .
For λ2 = 0, the eigenspace

E0 = ker (A− 0 · I3) = ker
 1 1 1

0 1 0
0 1 0


= ker

 1 0 1
0 1 0
0 0 0

 = span


 −10
1

 .
Since dim (E1) + dim (E0) = 1 + 1 = 2 < 3, we have no eigenbasis of
R3 in this case. This implies that A is not diagonalizable.
¥

5. (10pts) Find the trigonometric function of the form

f (t) = c0 + c1 sin (t) + c2 cos (t)

that best fits the data points (0,−1), ¡π
2
, 2
¢
, (π, 2) and

¡
3π
2
, 1
¢
,

using lease squares.

[Solution]
We want to find a f (t) = c0 + c1 sin (t) + c2 cos (t) such that f (0) =
−1, f ¡π

2

¢
= 2, f (π) = 2 and f

¡
3π
2

¢
= 1. These conditions give the
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system of linear equations
c0 + c1 sin (0) + c2 cos (0) = f (0) = −1
c0 + c1 sin

¡
π
2

¢
+ c2 cos

¡
π
2

¢
= f

¡
π
2

¢
= 2

c0 + c1 sin (π) + c2 cos (π) = f (π) = 2
c0 + c1 sin

¡
3π
2

¢
+ c2 cos

¡
3π
2

¢
= f

¡
3π
2

¢
= 1

,

or, 
c0 + c2 = −1
c0 + c1 = 2
c0 − c2 = 2
c0 − c1 = 1

.

Let A =


1 0 1
1 1 0
1 0 −1
1 −1 0

, x =
 c0

c1
c2

 and b =


−1
2
2
1

. We can

write the system as Ax = b. Since rref (A) =


1 0 0
0 1 0
0 0 1
0 0 0

, we have
ker (A) = {0}. So, the unique least-squares solution of Ax = b is

x∗ =
¡
ATA

¢−1
AT b

=


 1 1 1 1
0 1 0 −1
1 0 −1 0



1 0 1
1 1 0
1 0 −1
1 −1 0



−1  1 1 1 1

0 1 0 −1
1 0 −1 0



−1
2
2
1



=

 1
4
0 0

0 1
2
0

0 0 1
2

 1 1 1 1
0 1 0 −1
1 0 −1 0



−1
2
2
1


=

 1
1
2−3
2

 .
Moreover, the trigonometric function,

f∗ (t) = 1 +
1

2
sin (t)− 3

2
cos (t) ,

best fits the data points (0,−1), ¡π
2
, 2
¢
, (π, 2) and

¡
3π
2
, 1
¢
in the least-

squares sense.
¥
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6. (10pts) Given a matrix

A =

 1 0 2 −1
−2 7 3 −5
3 2 8 −5

 .
(a) Find a basis of kernel of A and dim (ker (A)).
(b) Find a basis of image of A and dim (im (A)).

[Solution]
By Gauss-Jordan elimination, we have

A =

 1 0 2 −1
−2 7 3 −5
3 2 8 −5


−→  1 0 2 −1

0 7 7 −7
0 2 2 −2


−→  1 0 2 −1

0 1 1 −1
0 0 0 0

 = rref (A) .

(a) Assume x =


x1
x2
x3
x4

 ∈ kerA. Then we have Ax = 0. By

Gauss-Jordan elimination(which implies ker (A) = ker rref (A)),
we have  1 0 2 −1

0 1 1 −1
0 0 0 0




x1
x2
x3
x4

 = 0.
Assume x3 = s and x4 = t for all s, t ∈ R. We have solutions
of the system,

x1
x2
x3
x4

 =

−2s+ t
−s+ t

s
t

 = s


−2
−1
1
0

+ t


1
1
0
1

 .
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Assume v1 =


−2
−1
1
0

 and v2 =

1
1
0
1

. That means ker (A) ⊆
span {v1, v2}. Moreover, we check that

A (v1) =

 1 0 2 −1
−2 7 3 −5
3 2 8 −5



−2
−1
1
0

 =
 00
0


and

A (v2) =

 1 0 2 −1
−2 7 3 −5
3 2 8 −5



1
1
0
1

 =
 00
0

 .
This tells us that {v1, v2} ⊆ ker (A) which implies ker (A) =
span {v1, v2}. To check v1 and v2 are linearly independent, we
assume that c1v1 + c2v2 = 0, or

0 = c1


−2
−1
1
0

+ c2


1
1
0
1

 =

−2c1 + c2
−c1 + c2

c1
c2

 .
This implies that c1 = c2 = 0. That proves that v1 and v2 are
linearly independent. Now, we can say v1, v2 form a basis of
ker (A). And, dim (ker (A)) equals the number of vectors in a
basis. So, dim (ker (A)) = 2.

(b) Set v1, v2, v3, v4 be the column vectors of A. Set w1, w2, w3, w4
be the column vectors of rref A. We know that

im (A) = span {v1, v2, v3, v4} .
From our reduced row-echlon form, we can read two relations
of w1, w2, w3, w4,

w3 = 2w1 + w2

and

w4 = −w1 − w2.

This implies we have the same relation of v1, v2, v3, v4 which
are

v3 = 2v1 + v2
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and

v4 = −v1 − v2.

Therefore, we can conclude that v1, v2 are linearly independent
and

im (A) = span {v1, v2, v3, v4} = span {v1, v2} .

Now, we can say that v1 =

 1
−2
3

 , v2 =
 07
2

 form a basis

of im (A). And, dim (im (A)) equals the number of vectors in
a basis. So, dim (im (A)) = 2.

¥
7. (10pts) Let T from R3 to R3 be the reflection in the plane given by the

equation

x1 + 2x2 + 3x3 = 0.

(a) Find the matrix B of this transformation with respect to the
basis

v1 =

 1
1
−1

 , v2 =

 −12
−1

 , v3 =

 12
3

 .
(b) Use your answer in part (a) to find the standard matrix A of

T .
[Solution]
(a) Let P be the plane given by the equation x1+2x2+3x3 = 0.

We observe that v1 and v2 are both on the plane P . Since T is
a reflection, it keeps v1 and v2 unchanged, that is, T (v1) = v1
and T (v2) = v2. And, v3 is the normal vector of P . That
means v3 is perpendicular to the plane P . Therefore, since
T is a reflection in P , we have T (v3) = −v3. With respect

to the basis B = {v1, v2, v3}, we have [T (v1)]B =
 10
0


B

,

[T (v2)]B =

 01
0


B

and [T (v3)]B =

 0
0
−1


B

. So

B =
£
[T (v1)]B [T (v2)]B [T (v3)]B

¤
=

 1 0 0
0 1 0
0 0 −1

 .
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(b) Write S =
£
v1 v2 v3

¤
=

 1 −1 1
1 2 2
−1 −1 3

. By the theorem
in the textbook, we have A = SBS−1. To find S−1, we use
Gauss-Jordan elimination on 1 −1 1 | 1 0 0

1 2 2 | 0 1 0
−1 −1 3 | 0 0 1


−→  1 −1 1 | 1 0 0

0 3 1 | −1 1 0
0 −2 4 | 1 0 1


−→  1 0 4

3
| 2

3
1
3
0

0 1 1
3
| −1

3
1
3
0

0 0 14
3
| 1

3
2
3
1


−→  1 0 0 | 8

14
2
14
− 4
14

0 1 0 | − 5
14

4
14
− 1
14

0 0 1 | 1
14

2
14

3
14

 .
Hence,

S−1 =

 4
7

1
7
−2
7− 5

14
2
7
− 1
14

1
14

1
7

3
14


and

A = SBS−1 =

 6
7
−2
7
−3
7−2

7
3
7
−6
7−3

7
−6
7
−2
7

 .
¥

8. (10pts) Consider a linear transformation T from V to W .
(a) For f1, f2, · · · , fn ∈ V , if T (f1) , T (f2) , · · · , T (fn) are lin-

early independent, show that f1, f2, · · · , fn are linearly inde-
pendent.

(b) Assume that f1, f2, · · · , fn form a basis of V . If T is an iso-
morphism, show that T (f1) , T (f2) , · · · , T (fn) is a basis of
W .

[Solution]



15

(a) Assume

a1f1 + a2f2 + · · ·+ anfn = 0.

By applying T on both sides, we have

T (a1f1 + a2f2 + · · ·+ anfn) = T
³
0
´
= 0.

Since T is a linear transformation,

a1T (f1) + · · ·+ anT (fn) = T (a1f1 + · · ·+ anfn) = 0.

Since T (f1) , T (f2) , · · · , T (fn) are linearly independent, we
have a1 = a2 = · · · = an = 0. That tells us that f1, f2, · · · , fn
are linearly independent.

(b) To show that T (f1) , T (f2) , · · · , T (fn) are linearly indepen-
dent, we assume c1T (f1) + c2T (f2) + · · · + cnT (fn) = 0.
Hence, we have T (c1f1 + · · ·+ cnfn) = 0 since T is a linear
transformation. Since T is an isomorphism from V to W , we
have T is invertible, that means, ker (T ) = {0}. This implies
c1f1 + · · · + cnfn = 0. Moreover, f1, f2, · · · , fn form a basis
of V . This condition forces that c1 = c2 = · · · = cn = 0.
So, T (f1) , T (f2) , · · · , T (fn) are linearly independent. Since
T is an isomorphism from V to W , we have T−1 is an iso-
morphism from W to V such that T (T−1 (g)) = g for all
g ∈ W . For all g ∈ W , we have T−1 (g) ∈ V . Since
f1, f2, · · · , fn form a basis of V , there exist t1, t2, · · · , tn such
that T−1 (g) = t1f1+ · · ·+ tnfn. Therefore, g = T (T−1 (g)) =
T (t1f1 + · · ·+ tnfn) = t1T (f1) + · · · tnT (fn). That means
g is a linear combination of T (f1) , T (f2) , · · · , T (fn). And,
obviously, T (f1) , T (f2) , · · · , T (fn) are all in W . Thus, we
can conclude that W = span {T (f1) , T (f2) , · · · , T (fn)}. So,
T (f1) , T (f2) , · · · , T (fn) form a basis of W

¥


