110.202. Linear Algebra 2003 Summer Midterm I 6/5/2003 1:00PM

1. (10pts) Consider a matrix A, and let $B=\operatorname{rref}(A)$.
(a) Is $\operatorname{ker}(A)$ necessarily equal to $\operatorname{ker}(B)$? Explain.
(b) Is im (A) necessarily equal to $\operatorname{im}(B)$? Explain.
2. (15pts) Consider the $n \times n$ matrix M_{n} which contains all integers $1,2,3, \cdots, n^{2}$ as its entries, written in sequence, column by column; for example,

$$
M_{4}=\left[\begin{array}{cccc}
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
4 & 8 & 12 & 16
\end{array}\right]
$$

(a) Determine the rank of M_{4}.
(b) Determine the rank of M_{n}, for an arbitrary $n \geq 2$.
(c) For which integers n is M_{n} invertible?
3. (15pts) If A and B are two $n \times n$ matrices such that $B A=I_{n}$. Prove the following properties:
(a) A and B are both invertible.
(b) $A^{-1}=B$ and $B^{-1}=A$.
(c) $A B=I_{n}$.
4. (20pts) Let T from \mathbb{R}^{3} to \mathbb{R}^{3} be the reflection in the plane given by the equation

$$
x_{1}+2 x_{2}+3 x_{3}=0 .
$$

(a) Find the matrix B of this transformation with respect to the basis

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

(b) Use your answer in part (a) to find the standard matrix A of T.
5. (10pts) Consider a linear transformation T from \mathbb{R}^{n} to \mathbb{R}^{m}.
(a) Let $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{q}$ be vectors in \mathbb{R}^{n}. If $T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), \cdots, T\left(\vec{v}_{q}\right)$ are linearly independent, are $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{q}$ linearly independent? How can you tell?
(b) Let $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{q}$ be vectors in \mathbb{R}^{n}. If $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{q}$ are linearly independent, are $T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), \cdots, T\left(\vec{v}_{q}\right)$ linearly independent? How can you tell?
6. (20pts) Given a matrix

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 2 & -5 & 0 \\
-2 & 7 & 3 & 4 & 0 \\
3 & 2 & 8 & 1 & -4 \\
4 & -1 & 8 & 2 & -9
\end{array}\right]
$$

(a) Find a basis of kernel of A and $\operatorname{dim}(\operatorname{ker}(A))$.
(b) Find a basis of image of A and $\operatorname{dim}(\operatorname{im}(A))$.
7. (10pts) Let L be a line in \mathbb{R}^{3} that consists of all scalar multiples of the vector $\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$.
(a) Find the orthogonal projection of the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ onto L.
(b) Find a matrix A such that $\operatorname{proj}_{L}(\vec{x})=A \vec{x}$ for all $\vec{x} \in \mathbb{R}^{3}$.

