110.202. Linear Algebra2003 SummerMidterm I6/5/2003 1:00PM

- **1.** (10pts) Consider a matrix A, and let $B = \operatorname{rref}(A)$.
 - (a) Is ker (A) necessarily equal to ker (B)? Explain.
 - (b) Is im(A) necessarily equal to im(B)? Explain.
- 2. (15pts) Consider the $n \times n$ matrix M_n which contains all integers $1, 2, 3, \dots, n^2$ as its entries, written in sequence, column by column; for example,

$$M_4 = \begin{bmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{bmatrix}.$$

- (a) Determine the rank of M_4 .
- (b) Determine the rank of M_n , for an arbitrary $n \ge 2$.
- (c) For which integers n is M_n invertible?
- **3.** (15pts) If A and B are two $n \times n$ matrices such that $BA = I_n$. Prove the following properties:
 - (a) A and B are both invertible.
 - (b) $A^{-1} = B$ and $B^{-1} = A$.
 - (c) $AB = I_n$.
- 4. (20pts) Let T from \mathbb{R}^3 to \mathbb{R}^3 be the reflection in the plane given by the equation

$$x_1 + 2x_2 + 3x_3 = 0.$$

(a) Find the matrix B of this transformation with respect to the basis

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} -1\\2\\-1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}.$$

(b) Use your answer in part (a) to find the standard matrix A of T.

5. (10pts) Consider a linear transformation T from \mathbb{R}^n to \mathbb{R}^m .

- (a) Let $\vec{v_1}, \vec{v_2}, \dots, \vec{v_q}$ be vectors in \mathbb{R}^n . If $T(\vec{v_1}), T(\vec{v_2}), \dots, T(\vec{v_q})$ are linearly independent, are $\vec{v_1}, \vec{v_2}, \dots, \vec{v_q}$ linearly independent? How can you tell?
- (b) Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_q$ be vectors in \mathbb{R}^n . If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_q$ are linearly independent, are $T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_q)$ linearly independent? How can you tell?
- 6. (20pts) Given a matrix

$$A = \begin{bmatrix} 1 & 0 & 2 & -5 & 0 \\ -2 & 7 & 3 & 4 & 0 \\ 3 & 2 & 8 & 1 & -4 \\ 4 & -1 & 8 & 2 & -9 \end{bmatrix}.$$

- (a) Find a basis of kernel of A and dim (ker (A)).
- (b) Find a basis of image of A and dim (im(A)).
- 7. (10pts) Let L be a line in \mathbb{R}^3 that consists of all scalar multiples of the $\begin{bmatrix} 2 \end{bmatrix}$

vector $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$.

- $\begin{bmatrix} 2 \end{bmatrix}$ (a) Find the orthogonal projection of the vector $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ onto L.
- (b) Find a matrix A such that $\operatorname{proj}_{L}(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^{3}$.