
110.202 Linear Algebra
Midterm 1 Solutions

1. (10pts) Consider a matrix A, and let B = rref (A).
(a) Is ker (A) necessarily equal to ker (B)? Explain.
(b) Is im (A) necessarily equal to im (B)? Explain.

[Solution]

(a) Yes. By construction of the reduced row-echlon form, the
system Ax = 0 and Bx = 0 have the same solutions(the
whole process of Gauss-Jordan elimination doesn’t change the
solutions of a system).

(b) No. Choose A =

·
0 0
1 0

¸
. Then, we have B = rref (A) =·

1 0
0 0

¸
. Hence,

im (A) = span

½·
0
1

¸
,

·
0
0

¸¾
=

½·
0
y

¸
where y ∈ R

¾
and

im (B) = span

½·
1
0

¸
,

·
0
0

¸¾
=

½·
x
0

¸
where x ∈ R

¾
which tell us that im (A) 6= im (B).

¥
2. (15pts) Consider the n×nmatrixMn which contains all integers 1, 2, 3, · · · , n2

as its entries, written in sequence, column by column; for example,

M4 =


1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

 .
(a) Determine the rank of M4.
(b) Determine the rank of Mn, for an arbitrary n ≥ 2.
(c) For which integers n is Mn invertible?

[Solution]
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(a) By Gauss-Jordan elimination, we have

M4 =


1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16


−→ 

1 5 9 13
0 −4 −8 −12
0 −8 −16 −24
0 −12 −24 −36


−→ 

1 0 −1 −2
0 1 2 3
0 0 0 0
0 0 0 0

 .
Hence, the rank (M4) = 2.

(b) By Gauss-Jordan elimination, we have

Mn =


1 n+ 1 2n+ 1 · · · (n− 1)n+ 1
2 n+ 2 2n+ 2 · · · (n− 1)n+ 2
...

...
...

. . .
...

n 2n 3n · · · n2


−→


1 n+ 1 2n+ 1 · · · (n− 1)n+ 1
0 n+ 2− 2 (n+ 1) 2n+ 2− 2 (2n+ 1) · · · (n− 1)n+ 2− 2 ((n− 1)n+ 1)
...

...
...

. . .
...

0 2n− n (n+ 1) 3n− n (2n+ 1) · · · n2 − n ((n− 1)n+ 1)


−→(by using the fact: sn + t − t (sn+ 1) = sn − tsn =
− (t− 1) sn for all 1 ≤ s ≤ n− 1 and 2 ≤ t ≤ n )
1 n+ 1 2n+ 1 · · · (n− 1)n+ 1
0 −n −2n · · · − (n− 1)n
...

...
...

. . .
...

0 − (n− 1)n − (n− 1) 2n · · · − (n− 1) (n− 1)n





3

−→ 
1 0 −1 · · · − (n− 2)
0 1 2 · · · (n− 1)
0 0 0 · · · 0
...
...

...
. . .

...
0 0 0 · · · 0

 .
Hence, the rank (Mn) = 2.

(c) Since Mn is invertible if and only if rankMn = n. By part
(b), we have M1 and M2 with are invertible. Mn for n ≥ 3 is
not invertible.

¥
3. (15pts) If A and B are two n× n matrices such that BA = In. Prove the

following properties:
(a) A and B are both invertible.
(b) A−1 = B and B−1 = A.
(c) AB = In.

[Solution]

1. (a) To prove A is invertible, we need to show that Ax = 0 has
exact one solution. Assume y be a solution of Ax = 0. Hence,
we have Ay = 0. This implies

y = Iny = (BA) y = B (Ay) = 0.

Therefore, 0 is the only solution of Ax = 0. This tells us that
A is invertible. We will prove (b) first and use (b) to prove B
is invertible.

(b) Since A is invertible, there exists a A−1 such that A−1A =
In = AA−1. And, we have

A−1 = InA
−1 = (BA)A−1 = B

¡
AA−1

¢
= BIn = B.

By the definition of inverse linear transformation, we have if
a linear transformation T is invertible, then so is T−1 and
(T−1)−1 = T . Assume T (x) = Ax. we have T−1 (y) =
A−1y = By. This implies B is invertible and

B−1 =
¡
A−1

¢−1
= A.

This completes the proof of (a) and (b).
(c) Since A−1 = B, we have AB = AA−1 = In.

¥
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4. (20pts) Let T from R3 to R3 be the reflection in the plane given by the
equation

x1 + 2x2 + 3x3 = 0.

(a) Find the matrix B of this transformation with respect to the
basis

v1 =

 1
1
−1

 , v2 =

 −12
−1

 , v3 =

 12
3

 .
(b) Use your answer in part (a) to find the standard matrix A of

T .
[Solution]
(a) Let P be the plane given by the equation x1+2x2+3x3 = 0.

We observe that v1 and v2 are both on the plane P . Since T is
a reflection, it keeps v1 and v2 unchanged, that is, T (v1) = v1
and T (v2) = v2. And, v3 is the normal vector of P . That
means v3 is perpendicular to the plane P . Therefore, since
T is a reflection in P , we have T (v3) = −v3. With respect

to the basis B = {v1, v2, v3}, we have [T (v1)]B =
 10
0


B

,

[T (v2)]B =

 01
0


B

and [T (v3)]B =

 0
0
−1


B

. So

B =
£
[T (v1)]B [T (v2)]B [T (v3)]B

¤
=

 1 0 0
0 1 0
0 0 −1

 .
(b) Write S =

£
v1 v2 v3

¤
=

 1 −1 1
1 2 2
−1 −1 3

. By the theorem
in the textbook, we have A = SBS−1. To find S−1, we use
Gauss-Jordan elimination on 1 −1 1 | 1 0 0

1 2 2 | 0 1 0
−1 −1 3 | 0 0 1


−→  1 −1 1 | 1 0 0

0 3 1 | −1 1 0
0 −2 4 | 1 0 1
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−→  1 0 4
3
| 2

3
1
3
0

0 1 1
3
| −1

3
1
3
0

0 0 14
3
| 1

3
2
3
1


−→  1 0 0 | 8

14
2
14
− 4
14

0 1 0 | − 5
14

4
14
− 1
14

0 0 1 | 1
14

2
14

3
14

 .
Hence,

S−1 =

 4
7

1
7
−2
7− 5

14
2
7
− 1
14

1
14

1
7

3
14


and

A = SBS−1 =

 6
7
−2
7
−3
7−2

7
3
7
−6
7−3

7
−6
7
−2
7

 .
¥

5. (10pts) Consider a linear transformation T from Rn to Rm.
(a) Let v1, v2, · · · , vq be vectors inRn. If T (v1) , T (v2) , · · · , T (vq)

are linearly independent, are v1, v2, · · · , vq linearly indepen-
dent? How can you tell?

(b) Let v1, v2, · · · , vq be vectors in Rn. If v1, v2, · · · , vq are linearly
independent, are T (v1) , T (v2) , · · · , T (vq) linearly indepen-
dent? How can you tell?

[Solution]
(a) Yes! Assume

a1v1 + a2v2 + · · ·+ aqvq = 0.

By applying T on both sides, we have

T (a1v1 + a2v2 + · · ·+ aqvq) = T
³
0
´
= 0.

Since T is a linear transformation,

a1T (v1) + · · ·+ aqT (vq) = T (a1v1 + · · ·+ aqvq) = 0.

Since T (v1) , T (v2) , · · · , T (vq) are linearly independent, we
have a1 = a2 = · · · = am = 0. That tells us that v1, v2, · · · , vq
are linearly independent.
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(b) No! Let T (x) =
·
1 0
0 0

¸
x be a linear transformation from

R2 to R2. e1 and
·
1
1

¸
are linearly independent in R2. But,

T (e1) =

·
1
0

¸
= T

µ·
1
1

¸¶
are not linearly independent

since we have T (e1)− T

µ·
1
1

¸¶
= 0.

¥
6. (20pts) Given a matrix

A =


1 0 2 −5 0
−2 7 3 4 0
3 2 8 1 −4
4 −1 8 2 −9

 .
(a) Find a basis of kernel of A and dim (ker (A)).
(b) Find a basis of image of A and dim (im (A)).

[Solution]
By Gauss-Jordan elimination, we have

A =


1 0 2 −5 0
−2 7 3 4 0
3 2 8 1 −4
4 −1 8 2 −9


−→ 

1 0 2 −5 0
0 7 7 −6 0
0 2 2 16 −4
0 −1 0 22 −9


−→ 

1 0 2 −5 0
0 1 0 −22 9
0 2 2 16 −4
0 7 7 −6 0


−→ 

1 0 2 −5 0
0 1 0 −22 9
0 0 2 60 −22
0 0 7 148 −63
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−→


1 0 0 −65 22
0 1 0 −22 9
0 0 1 30 −11
0 0 0 −62 14


−→


1 0 0 0 227

31
0 1 0 0 125

31
0 0 1 0 −131

31
0 0 0 1 − 7

31

 = rref (A) .

(a) Assume x =


x1
x2
x3
x4
x5

 ∈ kerA. Then we have Ax = 0. By

Gauss-Jordan elimination(which implies ker (A) = ker rref (A)),
we have


1 0 0 0 227

31
0 1 0 0 125

31
0 0 1 0 −131

31
0 0 0 1 − 7

31




x1
x2
x3
x4
x5

 = 0.

Assume x5 = t for all s, t ∈ R. We have solutions of the
system,


x1
x2
x3
x4
x5

 =

−227

31
t

−125
31
t

131
31
t

7
31
t
t

 = t


−227

31−125
31

131
31
7
31
1

 = t

31


−227
−125
131
7
31

 .
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Assume v =


−227
−125
131
7
31

. That means ker (A) ⊆ span {v}.

Moreover, for all k ∈ R,

A (kv) = k


1 0 2 −5 0
−2 7 3 4 0
3 2 8 1 −4
4 −1 8 2 −9



−227
−125
131
7
31

 =

0
0
0
0
0

 .
This tells us that which span {v} ⊆ ker (A) which implies
ker (A) = span {v}. Since v is a nonzero vector, v is linearly
independent. Now, we can say {v} is a basis of ker (A). And,
dim (ker (A)) equals the number of vectors in a basis. So,
dim (ker (A)) = 1.

(b) Set v1, v2, v3, v4, v5 to be column vectors ofA. Setw1, w2, w3, w4, w5
to be column vectors of rref A. We know that

im (A) = span {v1, v2, v3, v4, v5} .

From our reduced row-echlon form, we can read there is only
one relation of w1, w2, w3, w4, w5,

227

31
w1 +

125

31
w2 − 131

31
w3 − 7

31
w4 = w5.

This implies we have the same relation of v1, v2, v3, v4, v5,

227

31
v1 +

125

31
v2 − 131

31
v3 − 7

31
v4 = v5.

And, that is the only relation of v1, v2, v3, v4, v5. Then we can
conclude that v1, v2, v3, v4 are linearly independent and

im (A) = span {v1, v2, v3, v4, v5} = span {v1, v2, v3, v4} .

Now, we can say that {v1, v2, v3, v4} is a basis of im (A). And,
dim (im (A)) equals the number of vectors in a basis. So,
dim (im (A)) = 4.

¥
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7. (10pts) Let L be a line in R3 that consists of all scalar multiples of the

vector

 21
2

.
(a) Find the orthogonal projection of the vector

 11
1

 onto L.
(b) Find a matrix A such that projL (x) = Ax for all x ∈ R3.

[Solution]

(a) Since

°°°°°°
 21
2

°°°°°° = √22 + 12 + 22 = 3, we have a unit vector of
L,

u =
1

3

 21
2

 =
 2

3
1
3
2
3

 .
By the formula of projection, we have

projL (x) = (u · x)u.

Hence the orthogonal projection of the vector

 11
1

 onto L

is

projL

 11
1

 =

µ
2

3
· 1 + 1

3
· 1 + 2

3
· 1
¶ 2

3
1
3
2
3


=

µ
5

3

¶ 2
3
1
3
2
3

 =
 10

9
5
9
10
9

 .
(b) To calculate the matrix A of the orthogonal projection onto

L, projL (−), we calculate projL (e1), projL (e2) and projL (e3)
first. We have

projL

 10
0

 =

µ
2

3
· 1 + 1

3
· 0 + 2

3
· 0
¶ 2

3
1
3
2
3


=

µ
2

3

¶ 2
3
1
3
2
3

 =
 4

9
2
9
4
9

 .
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And,

projL

 01
0

 =

µ
2

3
· 0 + 1

3
· 0 + 2

3
· 0
¶ 2

3
1
3
2
3


=

µ
1

3

¶ 2
3
1
3
2
3

 =
 2

9
1
9
2
9

 .
And,

projL

 00
1

 =

µ
2

3
· 0 + 1

3
· 0 + 2

3
· 1
¶ 2

3
1
3
2
3


=

µ
2

3

¶ 2
3
1
3
2
3

 =
 4

9
2
9
4
9

 .
So, the matrix

A =
£
projL (e1) projL (e2) projL (e3)

¤
=

 4
9

2
9

4
9

2
9

1
9

2
9

4
9

2
9

4
9

 .
¥


