110.202 Linear Algebra

Midterm 1 Solutions

1. (10pts) Consider a matrix
$$A$$
, and let $B = \operatorname{rref}(A)$.

- (a) Is ker (A) necessarily equal to ker (B)? Explain.
- (b) Is im(A) necessarily equal to im(B)? Explain.

[Solution]

(a) Yes. By construction of the reduced row-echlon form, the system $A\vec{x} = \vec{0}$ and $B\vec{x} = \vec{0}$ have the same solutions(the whole process of Gauss-Jordan elimination doesn't change the solutions of a system).

(b) No. Choose
$$A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
. Then, we have $B = \operatorname{rref}(A) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Hence,
 $\operatorname{im}(A) = \operatorname{span}\left\{ \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} 0 \\ y \end{bmatrix} \text{ where } y \in \mathbb{R} \right\}$

im (A) = span
$$\left\{ \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} 0\\y \end{bmatrix}$$
 where $y \in \mathbb{R}$

and

im (B) = span
$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} x\\0 \end{bmatrix}$$
 where $x \in \mathbb{R} \right\}$

which tell us that $\operatorname{im}(A) \neq \operatorname{im}(B)$.

2. (15pts) Consider the $n \times n$ matrix M_n which contains all integers $1, 2, 3, \dots, n^2$ as its entries, written in sequence, column by column; for example,

$$M_4 = \begin{bmatrix} 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \\ 4 & 8 & 12 & 16 \end{bmatrix}$$

- (a) Determine the rank of M_4 .
- (b) Determine the rank of M_n , for an arbitrary $n \ge 2$.
- (c) For which integers n is M_n invertible?

[Solution]

(a) By Gauss-Jordan elimination, we have

Hence, the rank $(M_4) = 2$. (b) By Gauss-Jordan elimination, we have

$$M_n = \begin{bmatrix} 1 & n+1 & 2n+1 & \cdots & (n-1)n+1 \\ 2 & n+2 & 2n+2 & \cdots & (n-1)n+2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & 2n & 3n & \cdots & n^2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & n+1 & 2n+1 & \cdots & (n-1)n+1 \\ 0 & n+2-2(n+1) & 2n+2-2(2n+1) & \cdots & (n-1)n+2-2((n-1)n+1) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 2n-n(n+1) & 3n-n(2n+1) & \cdots & n^2-n((n-1)n+1) \\ \end{bmatrix}$$

$$\xrightarrow{} (by using the fact: sn + t - t(sn + 1) = sn - tsn = -(t-1)sn for all 1 \le s \le n-1 and 2 \le t \le n)$$

$$\begin{bmatrix} 1 & n+1 & 2n+1 & \cdots & (n-1)n+1 \\ 0 & -n & -2n & \cdots & -(n-1)n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & -(n-1)n & -(n-1)2n & \cdots & -(n-1)(n-1)n \end{bmatrix}$$

 $\mathbf{2}$

 \longrightarrow

 $\begin{bmatrix} 1 & 0 & -1 & \cdots & -(n-2) \\ 0 & 1 & 2 & \cdots & (n-1) \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}.$

Hence, the rank $(M_n) = 2$.

- (c) Since M_n is invertible if and only if rank $M_n = n$. By part (b), we have M_1 and M_2 with are invertible. M_n for $n \ge 3$ is not invertible.
- **3.** (15pts) If A and B are two $n \times n$ matrices such that $BA = I_n$. Prove the following properties:
 - (a) A and B are both invertible.
 - (b) $A^{-1} = B$ and $B^{-1} = A$.
 - (c) $AB = I_n$.

[Solution]

1. (a) To prove A is invertible, we need to show that $A\vec{x} = \vec{0}$ has exact one solution. Assume \vec{y} be a solution of $A\vec{x} = \vec{0}$. Hence, we have $A\vec{y} = \vec{0}$. This implies

$$\vec{y} = I_n \vec{y} = (BA) \vec{y} = B (A\vec{y}) = \vec{0}.$$

Therefore, $\vec{0}$ is the only solution of $A\vec{x} = \vec{0}$. This tells us that A is invertible. We will prove (b) first and use (b) to prove B is invertible.

(b) Since A is invertible, there exists a A^{-1} such that $A^{-1}A = I_n = AA^{-1}$. And, we have

$$A^{-1} = I_n A^{-1} = (BA) A^{-1} = B (AA^{-1}) = BI_n = B.$$

By the definition of inverse linear transformation, we have if a linear transformation T is invertible, then so is T^{-1} and $(T^{-1})^{-1} = T$. Assume $T(\vec{x}) = A\vec{x}$. we have $T^{-1}(\vec{y}) = A^{-1}\vec{y} = B\vec{y}$. This implies B is invertible and

$$B^{-1} = \left(A^{-1}\right)^{-1} = A.$$

This completes the proof of (a) and (b). (c) Since $A^{-1} = B$, we have $AB = AA^{-1} = I_n$. 4. (20pts) Let T from \mathbb{R}^3 to \mathbb{R}^3 be the reflection in the plane given by the equation

$$x_1 + 2x_2 + 3x_3 = 0.$$

(a) Find the matrix B of this transformation with respect to the basis

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \quad \vec{v}_2 = \begin{bmatrix} -1\\2\\-1 \end{bmatrix}, \quad \vec{v}_3 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

(b) Use your answer in part (a) to find the standard matrix A of T.

[Solution]

(a) Let P be the plane given by the equation $x_1 + 2x_2 + 3x_3 = 0$. We observe that $\vec{v_1}$ and $\vec{v_2}$ are both on the plane P. Since T is a reflection, it keeps $\vec{v_1}$ and $\vec{v_2}$ unchanged, that is, $T(\vec{v_1}) = \vec{v_1}$ and $T(\vec{v_2}) = \vec{v_2}$. And, $\vec{v_3}$ is the normal vector of P. That means $\vec{v_3}$ is perpendicular to the plane P. Therefore, since T is a reflection in P, we have $T(\vec{v_3}) = -\vec{v_3}$. With respect

to the basis
$$\mathcal{B} = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$$
, we have $[T(\vec{v}_1)]_{\mathcal{B}} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}_{\mathcal{B}}$,

$$[T(\vec{v}_2)]_{\mathcal{B}} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}_{\mathcal{B}} \text{ and } [T(\vec{v}_3)]_{\mathcal{B}} = \begin{bmatrix} 0\\0\\-1 \end{bmatrix}_{\mathcal{B}} \text{ . So}$$
$$B = \begin{bmatrix} [T(\vec{v}_1)]_{\mathcal{B}} & [T(\vec{v}_2)]_{\mathcal{B}} & [T(\vec{v}_3)]_{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & -1 \end{bmatrix}$$

(b) Write $S = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \vec{v_3} \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ 1 & 2 & 2 \\ -1 & -1 & 3 \end{bmatrix}$. By the theorem

in the textbook, we have $A = SBS^{-1}$. To find S^{-1} , we use Gauss-Jordan elimination on

Hence,

$$S^{-1} = \begin{bmatrix} \frac{4}{7} & \frac{1}{7} & -\frac{2}{7} \\ -\frac{5}{14} & \frac{2}{7} & -\frac{1}{14} \\ \frac{1}{14} & \frac{1}{7} & \frac{3}{14} \end{bmatrix}$$

and

$$A = SBS^{-1} = \begin{bmatrix} \frac{6}{7} & -\frac{2}{7} & -\frac{3}{7} \\ -\frac{2}{7} & \frac{3}{7} & -\frac{6}{7} \\ -\frac{3}{7} & -\frac{6}{7} & -\frac{2}{7} \end{bmatrix}.$$

5. (10pts) Consider a linear transformation T from
$$\mathbb{R}^n$$
 to \mathbb{R}^m .

- (a) Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_q$ be vectors in \mathbb{R}^n . If $T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_q)$ are linearly independent, are $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_q$ linearly independent? How can you tell?
- (b) Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_q$ be vectors in \mathbb{R}^n . If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_q$ are linearly independent, are $T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_q)$ linearly independent? How can you tell?

[Solution]

(a) Yes! Assume

$$a_1 \vec{v}_1 + a_2 \vec{v}_2 + \dots + a_q \vec{v}_q = 0.$$

By applying T on both sides, we have

$$T(a_1\vec{v}_1 + a_2\vec{v}_2 + \dots + a_q\vec{v}_q) = T(\vec{0}) = \vec{0}.$$

Since T is a linear transformation,

$$a_1T(\vec{v}_1) + \dots + a_qT(\vec{v}_q) = T(a_1\vec{v}_1 + \dots + a_q\vec{v}_q) = \vec{0}.$$

Since $T(\vec{v}_1), T(\vec{v}_2), \dots, T(\vec{v}_q)$ are linearly independent, we have $a_1 = a_2 = \dots = a_m = 0$. That tells us that $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_q$ are linearly independent.

(b) No! Let $T(\vec{x}) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \vec{x}$ be a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 . $\vec{e_1}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ are linearly independent in \mathbb{R}^2 . But, $T(\vec{e_1}) = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = T\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$ are not linearly independent since we have $T(\vec{e_1}) - T\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) = 0$.

6. (20pts) Given a matrix

$$A = \begin{bmatrix} 1 & 0 & 2 & -5 & 0 \\ -2 & 7 & 3 & 4 & 0 \\ 3 & 2 & 8 & 1 & -4 \\ 4 & -1 & 8 & 2 & -9 \end{bmatrix}.$$

- (a) Find a basis of kernel of A and dim (ker (A)).
- (b) Find a basis of image of A and dim (im(A)).

[Solution]

By Gauss-Jordan elimination, we have

$$A = \begin{bmatrix} 1 & 0 & 2 & -5 & 0 \\ -2 & 7 & 3 & 4 & 0 \\ 3 & 2 & 8 & 1 & -4 \\ 4 & -1 & 8 & 2 & -9 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 2 & -5 & 0 \\ 0 & 7 & 7 & -6 & 0 \\ 0 & 2 & 2 & 16 & -4 \\ 0 & -1 & 0 & 22 & -9 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 2 & -5 & 0 \\ 0 & 1 & 0 & -22 & 9 \\ 0 & 2 & 2 & 16 & -4 \\ 0 & 7 & 7 & -6 & 0 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 2 & -5 & 0 \\ 0 & 1 & 0 & -22 & 9 \\ 0 & 2 & 2 & 16 & -4 \\ 0 & 7 & 7 & -6 & 0 \end{bmatrix}$$

 $\mathbf{6}$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \frac{227}{31} \\ 0 & 1 & 0 & 0 & \frac{125}{31} \\ 0 & 0 & 1 & 0 & -\frac{131}{31} \\ 0 & 0 & 0 & 1 & -\frac{7}{31} \end{bmatrix} = \operatorname{rref}(A).$$

(a) Assume
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} \in \ker A$$
. Then we have $A\vec{x} = \vec{0}$. By

Gauss-Jordan elimination (which implies ker (A) = ker rref(A)), we have

$$\begin{bmatrix} 1 & 0 & 0 & 0 & \frac{227}{31} \\ 0 & 1 & 0 & 0 & \frac{125}{31} \\ 0 & 0 & 1 & 0 & -\frac{131}{31} \\ 0 & 0 & 0 & 1 & -\frac{7}{31} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \vec{0}.$$

Assume $x_5 = t$ for all $s, t \in \mathbb{R}$. We have solutions of the system,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -\frac{227}{31}t \\ -\frac{125}{31}t \\ \frac{131}{31}t \\ \frac{7}{31}t \\ t \end{bmatrix} = t \begin{bmatrix} -\frac{227}{31} \\ -\frac{125}{31} \\ \frac{131}{31} \\ \frac{7}{31} \\ 1 \end{bmatrix} = \frac{t}{31} \begin{bmatrix} -227 \\ -125 \\ 131 \\ 7 \\ 31 \end{bmatrix}.$$

Assume
$$\vec{v} = \begin{bmatrix} -227 \\ -125 \\ 131 \\ 7 \\ 31 \end{bmatrix}$$
. That means ker $(A) \subseteq \text{span} \{\vec{v}\}$
Moreover, for all $k \in \mathbb{R}$,

$$A(k\vec{v}) = k \begin{bmatrix} 1 & 0 & 2 & -5 & 0 \\ -2 & 7 & 3 & 4 & 0 \\ 3 & 2 & 8 & 1 & -4 \\ 4 & -1 & 8 & 2 & -9 \end{bmatrix} \begin{bmatrix} -227 \\ -125 \\ 131 \\ 7 \\ 31 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

This tells us that which span $\{\vec{v}\} \subseteq \ker(A)$ which implies $\ker(A) = \operatorname{span}\{\vec{v}\}$. Since \vec{v} is a nonzero vector, \vec{v} is linearly independent. Now, we can say $\{\vec{v}\}$ is a basis of ker (A). And, dim $(\ker(A))$ equals the number of vectors in a basis. So, dim $(\ker(A)) = 1$.

(b) Set $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5$ to be column vectors of A. Set $\vec{w}_1, \vec{w}_2, \vec{w}_3, \vec{w}_4, \vec{w}_5$ to be column vectors of rref A. We know that

$$\operatorname{im}(A) = \operatorname{span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5\}.$$

From our reduced row-echlon form, we can read there is only one relation of $\vec{w}_1, \vec{w}_2, \vec{w}_3, \vec{w}_4, \vec{w}_5$,

$$\frac{227}{31}\vec{w_1} + \frac{125}{31}\vec{w_2} - \frac{131}{31}\vec{w_3} - \frac{7}{31}\vec{w_4} = \vec{w_5}.$$

This implies we have the same relation of $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5$,

$$\frac{227}{31}\vec{v}_1 + \frac{125}{31}\vec{v}_2 - \frac{131}{31}\vec{v}_3 - \frac{7}{31}\vec{v}_4 = \vec{v}_5.$$

And, that is the only relation of $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5$. Then we can conclude that $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are linearly independent and

$$\operatorname{im}(A) = \operatorname{span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4, \vec{v}_5\} = \operatorname{span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}.$$

Now, we can say that $\{\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4\}$ is a basis of im (A). And, dim (im (A)) equals the number of vectors in a basis. So, dim (im (A)) = 4.

8

7. (10pts) Let L be a line in \mathbb{R}^3 that consists of all scalar multiples of the vector $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$.

(a) Find the orthogonal projection of the vector $\begin{bmatrix} 1\\ 1\\ 1 \end{bmatrix}$ onto L.

(b) Find a matrix A such that $\operatorname{proj}_{L}(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^{3}$. [Solution]

(a) Since $\left\| \begin{bmatrix} 2\\1\\2 \end{bmatrix} \right\| = \sqrt{2^2 + 1^2 + 2^2} = 3$, we have a unit vector of L, $\vec{u} = \frac{1}{3} \begin{bmatrix} 2\\1\\2 \end{bmatrix} = \begin{bmatrix} \frac{2}{3}\\\frac{1}{3}\\\frac{2}{3} \end{bmatrix}.$

By the formula of projection, we have

$$\operatorname{proj}_{L}\left(\vec{x}\right) = \left(\vec{u} \cdot \vec{x}\right) \vec{u}.$$

Hence the orthogonal projection of the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ onto L is

$$\operatorname{proj}_{L}\left(\left[\begin{array}{c}1\\1\\1\end{array}\right]\right) = \left(\frac{2}{3}\cdot 1 + \frac{1}{3}\cdot 1 + \frac{2}{3}\cdot 1\right)\left[\begin{array}{c}\frac{2}{3}\\\frac{1}{3}\\\frac{2}{3}\end{array}\right]$$
$$= \left(\frac{5}{3}\right)\left[\begin{array}{c}\frac{2}{3}\\\frac{1}{3}\\\frac{2}{3}\end{array}\right] = \left[\begin{array}{c}\frac{10}{9}\\\frac{5}{9}\\\frac{10}{9}\end{array}\right].$$

(b) To calculate the matrix A of the orthogonal projection onto L, $\operatorname{proj}_{L}(-)$, we calculate $\operatorname{proj}_{L}(\vec{e_1})$, $\operatorname{proj}_{L}(\vec{e_2})$ and $\operatorname{proj}_{L}(\vec{e_3})$ first. We have

$$\operatorname{proj}_{L}\left(\left[\begin{array}{c}1\\0\\0\end{array}\right]\right) = \left(\frac{2}{3}\cdot 1 + \frac{1}{3}\cdot 0 + \frac{2}{3}\cdot 0\right) \left[\begin{array}{c}\frac{2}{3}\\\frac{1}{3}\\\frac{2}{3}\\\frac{2}{3}\end{array}\right]$$
$$= \left(\frac{2}{3}\right) \left[\begin{array}{c}\frac{2}{3}\\\frac{1}{3}\\\frac{2}{3}\\\frac{2}{3}\end{array}\right] = \left[\begin{array}{c}\frac{4}{9}\\\frac{2}{9}\\\frac{4}{9}\end{array}\right].$$

And,

$$\operatorname{proj}_{L}\left(\left[\begin{array}{c}0\\1\\0\end{array}\right]\right) = \left(\frac{2}{3}\cdot 0 + \frac{1}{3}\cdot 0 + \frac{2}{3}\cdot 0\right)\left[\begin{array}{c}\frac{2}{3}\\\frac{1}{3}\\\frac{2}{3}\end{array}\right]$$

$$= \left(\frac{1}{3}\right)\left[\begin{array}{c}\frac{2}{3}\\\frac{1}{3}\\\frac{2}{3}\end{array}\right] = \left[\begin{array}{c}\frac{2}{9}\\\frac{1}{9}\\\frac{2}{9}\end{array}\right].$$
And

And,

$$\operatorname{proj}_{L}\left(\left[\begin{array}{c}0\\0\\1\end{array}\right]\right) = \left(\frac{2}{3}\cdot 0 + \frac{1}{3}\cdot 0 + \frac{2}{3}\cdot 1\right)\left[\begin{array}{c}\frac{2}{3}\\\frac{1}{3}\\\frac{2}{3}\end{array}\right]$$
$$= \left(\frac{2}{3}\right)\left[\begin{array}{c}\frac{2}{3}\\\frac{1}{3}\\\frac{2}{3}\end{array}\right] = \left[\begin{array}{c}\frac{4}{9}\\\frac{2}{9}\\\frac{4}{9}\end{array}\right].$$

So, the matrix

$$A = \begin{bmatrix} \operatorname{proj}_{L}(\vec{e_{1}}) & \operatorname{proj}_{L}(\vec{e_{2}}) & \operatorname{proj}_{L}(\vec{e_{3}}) \end{bmatrix} = \begin{bmatrix} \frac{4}{9} & \frac{2}{9} & \frac{4}{9} \\ \frac{2}{9} & \frac{1}{9} & \frac{2}{9} \\ \frac{4}{9} & \frac{2}{9} & \frac{4}{9} \end{bmatrix}.$$

10