110.202 Linear Algebra

 Midterm 1 Solutions

 Midterm 1 Solutions}

1. (10pts) Consider a matrix A, and let $B=\operatorname{rref}(A)$.
(a) Is $\operatorname{ker}(A)$ necessarily equal to $\operatorname{ker}(B)$? Explain.
(b) Is im (A) necessarily equal to im (B) ? Explain.
[Solution]
(a) Yes. By construction of the reduced row-echlon form, the system $A \vec{x}=\overrightarrow{0}$ and $B \vec{x}=\overrightarrow{0}$ have the same solutions(the whole process of Gauss-Jordan elimination doesn't change the solutions of a system).
(b) No. Choose $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$. Then, we have $B=\operatorname{rref}(A)=$ $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$. Hence,
$\operatorname{im}(A)=\operatorname{span}\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}=\left\{\left[\begin{array}{l}0 \\ y\end{array}\right]\right.$ where $\left.y \in \mathbb{R}\right\}$
and
$\operatorname{im}(B)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}=\left\{\left[\begin{array}{l}x \\ 0\end{array}\right]\right.$ where $\left.x \in \mathbb{R}\right\}$
which tell us that $\operatorname{im}(A) \neq \operatorname{im}(B)$.
2. (15pts) Consider the $n \times n$ matrix M_{n} which contains all integers $1,2,3, \cdots, n^{2}$ as its entries, written in sequence, column by column; for example,

$$
M_{4}=\left[\begin{array}{cccc}
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
4 & 8 & 12 & 16
\end{array}\right]
$$

(a) Determine the rank of M_{4}.
(b) Determine the rank of M_{n}, for an arbitrary $n \geq 2$.
(c) For which integers n is M_{n} invertible?
[Solution]
(a) By Gauss-Jordan elimination, we have

$$
\begin{array}{cc}
\longrightarrow & M_{4}=\left[\begin{array}{cccc}
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
4 & 8 & 12 & 16
\end{array}\right] \\
\longrightarrow & {\left[\begin{array}{cccc}
1 & 5 & 9 & 13 \\
0 & -4 & -8 & -12 \\
0 & -8 & -16 & -24 \\
0 & -12 & -24 & -36
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{array}
$$

Hence, the $\operatorname{rank}\left(M_{4}\right)=2$.
(b) By Gauss-Jordan elimination, we have

$$
M_{n}=\left[\begin{array}{ccccc}
1 & n+1 & 2 n+1 & \cdots & (n-1) n+1 \\
2 & n+2 & 2 n+2 & \cdots & (n-1) n+2 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n & 2 n & 3 n & \cdots & n^{2}
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
1 & n+1 & 2 n+1 & \cdots & (n-1) n+1 \\
0 & n+2-2(n+1) & 2 n+2-2(2 n+1) & \cdots & (n-1) n+2-2((n-1) n+1) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 2 n-n(n+1) & 3 n-n(2 n+1) & \cdots & n^{2}-n((n-1) n+1)
\end{array}\right]
$$

$\longrightarrow($ by using the fact: $s n+t-t(s n+1)=s n-t s n=$ $-(t-1) s n$ for all $1 \leq s \leq n-1$ and $2 \leq t \leq n)$

$$
\left[\begin{array}{ccccc}
1 & n+1 & 2 n+1 & \cdots & (n-1) n+1 \\
0 & -n & -2 n & \cdots & -(n-1) n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & -(n-1) n & -(n-1) 2 n & \cdots & -(n-1)(n-1) n
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
1 & 0 & -1 & \cdots & -(n-2) \\
0 & 1 & 2 & \cdots & (n-1) \\
0 & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

Hence, the rank $\left(M_{n}\right)=2$.
(c) Since M_{n} is invertible if and only if rank $M_{n}=n$. By part (b), we have M_{1} and M_{2} with are invertible. M_{n} for $n \geq 3$ is not invertible.
3. (15pts) If A and B are two $n \times n$ matrices such that $B A=I_{n}$. Prove the following properties:
(a) A and B are both invertible.
(b) $A^{-1}=B$ and $B^{-1}=A$.
(c) $A B=I_{n}$.

[Solution]

1. (a) To prove A is invertible, we need to show that $A \vec{x}=\overrightarrow{0}$ has exact one solution. Assume \vec{y} be a solution of $A \vec{x}=\overrightarrow{0}$. Hence, we have $A \vec{y}=\overrightarrow{0}$. This implies

$$
\vec{y}=I_{n} \vec{y}=(B A) \vec{y}=B(A \vec{y})=\overrightarrow{0} .
$$

Therefore, $\overrightarrow{0}$ is the only solution of $A \vec{x}=\overrightarrow{0}$. This tells us that A is invertible. We will prove (b) first and use (b) to prove B is invertible.
(b) Since A is invertible, there exists a A^{-1} such that $A^{-1} A=$ $I_{n}=A A^{-1}$. And, we have
$A^{-1}=I_{n} A^{-1}=(B A) A^{-1}=B\left(A A^{-1}\right)=B I_{n}=B$.
By the definition of inverse linear transformation, we have if a linear transformation T is invertible, then so is T^{-1} and $\left(T^{-1}\right)^{-1}=T$. Assume $T(\vec{x})=A \vec{x}$. we have $T^{-1}(\vec{y})=$ $A^{-1} \vec{y}=B \vec{y}$. This implies B is invertible and

$$
B^{-1}=\left(A^{-1}\right)^{-1}=A
$$

This completes the proof of (a) and (b).
(c) Since $A^{-1}=B$, we have $A B=A A^{-1}=I_{n}$.
4. (20pts) Let T from \mathbb{R}^{3} to \mathbb{R}^{3} be the reflection in the plane given by the equation

$$
x_{1}+2 x_{2}+3 x_{3}=0 .
$$

(a) Find the matrix B of this transformation with respect to the basis

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
-1
\end{array}\right], \quad \vec{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

(b) Use your answer in part (a) to find the standard matrix A of T.
[Solution]
(a) Let P be the plane given by the equation $x_{1}+2 x_{2}+3 x_{3}=0$. We observe that \vec{v}_{1} and \vec{v}_{2} are both on the plane P. Since T is a reflection, it keeps \vec{v}_{1} and \vec{v}_{2} unchanged, that is, $T\left(\vec{v}_{1}\right)=\vec{v}_{1}$ and $T\left(\vec{v}_{2}\right)=\vec{v}_{2}$. And, \vec{v}_{3} is the normal vector of P. That means \vec{v}_{3} is perpendicular to the plane P. Therefore, since T is a reflection in P, we have $T\left(\vec{v}_{3}\right)=-\vec{v}_{3}$. With respect to the basis $\mathcal{B}=\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$, we have $\left[T\left(\vec{v}_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]_{\mathcal{B}}$, $\left[T\left(\vec{v}_{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]_{\mathcal{B}}$ and $\left[T\left(\vec{v}_{3}\right)\right]_{\mathcal{B}}=\left[\begin{array}{c}0 \\ 0 \\ -1\end{array}\right]_{\mathcal{B}}$. So $B=\left[\begin{array}{lll}{\left[T\left(\vec{v}_{1}\right)\right]_{\mathcal{B}}} & {\left[T\left(\vec{v}_{2}\right)\right]_{\mathcal{B}}} & {\left[T\left(\vec{v}_{3}\right)\right]_{\mathcal{B}}}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$.
(b) Write $S=\left[\begin{array}{lll}\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 2 & 2 \\ -1 & -1 & 3\end{array}\right]$. By the theorem in the textbook, we have $A=S B S^{-1}$. To find S^{-1}, we use Gauss-Jordan elimination on

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
1 & 2 & 2 & 0 & 1 & 0 \\
-1 & -1 & 3 & 0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc|ccc}
1 & -1 & 1 & 1 & 0 & 0 \\
0 & 3 & 1 & -1 & 1 & 0 \\
0 & -2 & 4 & 1 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

\longrightarrow

$$
\begin{gathered}
{\left[\begin{array}{ccc|ccc}
1 & 0 & \frac{4}{3} & \frac{2}{3} & \frac{1}{3} & 0 \\
0 & 1 & \frac{1}{3} & -\frac{1}{3} & \frac{1}{3} & 0 \\
0 & 0 & \frac{14}{3} & \frac{1}{3} & \frac{2}{3} & 1
\end{array}\right]} \\
{\left[\begin{array}{ccc|ccc}
1 & 0 & 0 & \frac{8}{14} & \frac{2}{14} & -\frac{4}{14} \\
0 & 1 & 0 & -\frac{5}{14} & \frac{4}{14} & -\frac{1}{14} \\
0 & 0 & 1 & \frac{1}{14} & \frac{2}{14} & \frac{3}{14}
\end{array}\right] .}
\end{gathered}
$$

Hence,

$$
S^{-1}=\left[\begin{array}{ccc}
\frac{4}{7} & \frac{1}{7} & -\frac{2}{7} \\
-\frac{5}{14} & \frac{2}{7} & -\frac{1}{14} \\
\frac{1}{14} & \frac{1}{7} & \frac{3}{14}
\end{array}\right]
$$

and

$$
A=S B S^{-1}=\left[\begin{array}{ccc}
\frac{6}{7} & -\frac{2}{7} & -\frac{3}{7} \\
-\frac{2}{7} & \frac{3}{7} & -\frac{6}{7} \\
-\frac{3}{7} & -\frac{6}{7} & -\frac{2}{7}
\end{array}\right] .
$$

5. (10pts) Consider a linear transformation T from \mathbb{R}^{n} to \mathbb{R}^{m}.
(a) Let $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{q}$ be vectors in \mathbb{R}^{n}. If $T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), \cdots, T\left(\vec{v}_{q}\right)$ are linearly independent, are $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{q}$ linearly independent? How can you tell?
(b) Let $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{q}$ be vectors in \mathbb{R}^{n}. If $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{q}$ are linearly independent, are $T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), \cdots, T\left(\vec{v}_{q}\right)$ linearly independent? How can you tell?

[Solution]

(a) Yes! Assume

$$
a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{q} \vec{v}_{q}=\overrightarrow{0}
$$

By applying T on both sides, we have

$$
T\left(a_{1} \vec{v}_{1}+a_{2} \vec{v}_{2}+\cdots+a_{q} \vec{v}_{q}\right)=T(\overrightarrow{0})=\overrightarrow{0}
$$

Since T is a linear transformation,
$a_{1} T\left(\vec{v}_{1}\right)+\cdots+a_{q} T\left(\vec{v}_{q}\right)=T\left(a_{1} \vec{v}_{1}+\cdots+a_{q} \vec{v}_{q}\right)=\overrightarrow{0}$.
Since $T\left(\vec{v}_{1}\right), T\left(\vec{v}_{2}\right), \cdots, T\left(\vec{v}_{q}\right)$ are linearly independent, we have $a_{1}=a_{2}=\cdots=a_{m}=0$. That tells us that $\vec{v}_{1}, \vec{v}_{2}, \cdots, \vec{v}_{q}$ are linearly independent.

6
(b) No! Let $T(\vec{x})=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right] \vec{x}$ be a linear transformation from \mathbb{R}^{2} to $\mathbb{R}^{2} . \vec{e}_{1}$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ are linearly independent in \mathbb{R}^{2}. But, $T\left(\vec{e}_{1}\right)=\left[\begin{array}{l}1 \\ 0\end{array}\right]=T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)$ are not linearly independent since we have $T\left(\vec{e}_{1}\right)-T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=0$.
6. (20pts) Given a matrix

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 2 & -5 & 0 \\
-2 & 7 & 3 & 4 & 0 \\
3 & 2 & 8 & 1 & -4 \\
4 & -1 & 8 & 2 & -9
\end{array}\right]
$$

(a) Find a basis of kernel of A and $\operatorname{dim}(\operatorname{ker}(A))$.
(b) Find a basis of image of A and $\operatorname{dim}(\operatorname{im}(A))$.
[Solution]
By Gauss-Jordan elimination, we have

$$
A=\left[\begin{array}{ccccc}
1 & 0 & 2 & -5 & 0 \\
-2 & 7 & 3 & 4 & 0 \\
3 & 2 & 8 & 1 & -4 \\
4 & -1 & 8 & 2 & -9
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
1 & 0 & 2 & -5 & 0 \\
0 & 7 & 7 & -6 & 0 \\
0 & 2 & 2 & 16 & -4 \\
0 & -1 & 0 & 22 & -9
\end{array}\right]
$$

\qquad

$$
\left[\begin{array}{ccccc}
1 & 0 & 2 & -5 & 0 \\
0 & 1 & 0 & -22 & 9 \\
0 & 2 & 2 & 16 & -4 \\
0 & 7 & 7 & -6 & 0
\end{array}\right]
$$

\longrightarrow

$$
\left[\begin{array}{ccccc}
1 & 0 & 2 & -5 & 0 \\
0 & 1 & 0 & -22 & 9 \\
0 & 0 & 2 & 60 & -22 \\
0 & 0 & 7 & 148 & -63
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & -65 & 22 \\
0 & 1 & 0 & -22 & 9 \\
0 & 0 & 1 & 30 & -11 \\
0 & 0 & 0 & -62 & 14
\end{array}\right]
$$

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{227}{31} \\
0 & 1 & 0 & 0 & \frac{125}{31} \\
0 & 0 & 1 & 0 & -\frac{131}{31} \\
0 & 0 & 0 & 1 & -\frac{7}{31}
\end{array}\right]=\operatorname{rref}(A) .
$$

(a) Assume $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right] \in \operatorname{ker} A$. Then we have $A \vec{x}=\overrightarrow{0}$. By Gauss-Jordan elimination(which implies $\operatorname{ker}(A)=\operatorname{ker} \operatorname{rref}(A)$), we have

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \frac{227}{31} \\
0 & 1 & 0 & 0 & \frac{125}{31} \\
0 & 0 & 1 & 0 & -\frac{131}{31} \\
0 & 0 & 0 & 1 & -\frac{7}{31}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\overrightarrow{0} .
$$

Assume $x_{5}=t$ for all $s, t \in \mathbb{R}$. We have solutions of the system,

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{c}
-\frac{227}{31} t \\
-\frac{125}{31} t \\
\frac{131}{31} t \\
\frac{7}{31} t \\
t
\end{array}\right]=t\left[\begin{array}{c}
-\frac{227}{31} \\
-\frac{125}{31} \\
\frac{131}{31} \\
\frac{7}{31} \\
1
\end{array}\right]=\frac{t}{31}\left[\begin{array}{c}
-227 \\
-125 \\
131 \\
7 \\
31
\end{array}\right] .
$$

Assume $\vec{v}=\left[\begin{array}{c}-227 \\ -125 \\ 131 \\ 7 \\ 31\end{array}\right]$. That means $\operatorname{ker}(A) \subseteq \operatorname{span}\{\vec{v}\}$.
Moreover, for all $k \in \mathbb{R}$,

$$
A(k \vec{v})=k\left[\begin{array}{ccccc}
1 & 0 & 2 & -5 & 0 \\
-2 & 7 & 3 & 4 & 0 \\
3 & 2 & 8 & 1 & -4 \\
4 & -1 & 8 & 2 & -9
\end{array}\right]\left[\begin{array}{c}
-227 \\
-125 \\
131 \\
7 \\
31
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

This tells us that which span $\{\vec{v}\} \subseteq \operatorname{ker}(A)$ which implies $\operatorname{ker}(A)=\operatorname{span}\{\vec{v}\}$. Since \vec{v} is a nonzero vector, \vec{v} is linearly independent. Now, we can say $\{\vec{v}\}$ is a basis of $\operatorname{ker}(A)$. And, $\operatorname{dim}(\operatorname{ker}(A))$ equals the number of vectors in a basis. So, $\operatorname{dim}(\operatorname{ker}(A))=1$.
(b) Set $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}$ to be column vectors of A. Set $\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \vec{w}_{4}, \vec{w}_{5}$ to be column vectors of ref A. We know that

$$
\operatorname{im}(A)=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}\right\} .
$$

From our reduced row-echlon form, we can read there is only one relation of $\vec{w}_{1}, \vec{w}_{2}, \vec{w}_{3}, \vec{w}_{4}, \vec{w}_{5}$,

$$
\frac{227}{31} \vec{w}_{1}+\frac{125}{31} \vec{w}_{2}-\frac{131}{31} \vec{w}_{3}-\frac{7}{31} \vec{w}_{4}=\vec{w}_{5}
$$

This implies we have the same relation of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}$,

$$
\frac{227}{31} \vec{v}_{1}+\frac{125}{31} \vec{v}_{2}-\frac{131}{31} \vec{v}_{3}-\frac{7}{31} \vec{v}_{4}=\vec{v}_{5} .
$$

And, that is the only relation of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}$. Then we can conclude that $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}$ are linearly independent and
$\operatorname{im}(A)=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}, \vec{v}_{5}\right\}=\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$.
Now, we can say that $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ is a basis of $\operatorname{im}(A)$. And, $\operatorname{dim}(\operatorname{im}(A))$ equals the number of vectors in a basis. So, $\operatorname{dim}(\operatorname{im}(A))=4$.
7. (10pts) Let L be a line in \mathbb{R}^{3} that consists of all scalar multiples of the vector $\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]$.
(a) Find the orthogonal projection of the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ onto L.
(b) Find a matrix A such that $\operatorname{proj}_{L}(\vec{x})=A \vec{x}$ for all $\vec{x} \in \mathbb{R}^{3}$.
[Solution]
(a) Since $\left\|\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]\right\|=\sqrt{2^{2}+1^{2}+2^{2}}=3$, we have a unit vector of L,

$$
\vec{u}=\frac{1}{3}\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right] .
$$

By the formula of projection, we have

$$
\operatorname{proj}_{L}(\vec{x})=(\vec{u} \cdot \vec{x}) \vec{u} .
$$

Hence the orthogonal projection of the vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ onto L is

$$
\begin{aligned}
\operatorname{proj}_{L}\left(\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right) & =\left(\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 1+\frac{2}{3} \cdot 1\right)\left[\begin{array}{l}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right] \\
& =\left(\frac{5}{3}\right)\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{10}{9} \\
\frac{5}{9} \\
\frac{10}{9}
\end{array}\right] .
\end{aligned}
$$

(b) To calculate the matrix A of the orthogonal projection onto $L, \operatorname{proj}_{L}(-)$, we calculate $\operatorname{proj}_{L}\left(\vec{e}_{1}\right), \operatorname{proj}_{L}\left(\vec{e}_{2}\right)$ and $\operatorname{proj}_{L}\left(\vec{e}_{3}\right)$ first. We have

$$
\begin{aligned}
\operatorname{proj}_{L}\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right) & =\left(\frac{2}{3} \cdot 1+\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 0\right)\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right] \\
& =\left(\frac{2}{3}\right)\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{9} \\
\frac{2}{9} \\
\frac{4}{9}
\end{array}\right] .
\end{aligned}
$$

And,

$$
\begin{aligned}
\operatorname{proj}_{L}\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right) & =\left(\frac{2}{3} \cdot 0+\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 0\right)\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right] \\
& =\left(\frac{1}{3}\right)\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{9} \\
\frac{1}{9} \\
\frac{2}{9}
\end{array}\right]
\end{aligned}
$$

And,

$$
\begin{aligned}
\operatorname{proj}_{L}\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) & =\left(\frac{2}{3} \cdot 0+\frac{1}{3} \cdot 0+\frac{2}{3} \cdot 1\right)\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right] \\
& =\left(\frac{2}{3}\right)\left[\begin{array}{c}
\frac{2}{3} \\
\frac{1}{3} \\
\frac{2}{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{9} \\
\frac{2}{9} \\
\frac{4}{9}
\end{array}\right] .
\end{aligned}
$$

So, the matrix

$$
A=\left[\operatorname{proj}_{L}\left(\vec{e}_{1}\right) \quad \operatorname{proj}_{L}\left(\vec{e}_{2}\right) \quad \operatorname{proj}_{L}\left(\vec{e}_{3}\right)\right]=\left[\begin{array}{ccc}
\frac{4}{9} & \frac{2}{9} & \frac{4}{9} \\
\frac{2}{9} & \frac{1}{9} & \frac{2}{9} \\
\frac{4}{9} & \frac{2}{9} & \frac{4}{9}
\end{array}\right]
$$

