110.202. Linear Algebra 2003 Summer Midterm II 6/17/2003 1:00PM

1. (20pts) (a) Find an orthonormal basis of the space P_{1} with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t .
$$

(b) Find the linear polynomial $g(t)=a+b t$ that best approximates the function $f(t)=t^{2}$ in the interval $[0,1]$ in the (continuous) least-squares sense.
2. (10pts) Consider the subspace W of \mathbb{R}^{4} spanned by the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \text { and } \vec{v}_{2}=\left[\begin{array}{c}
1 \\
9 \\
-5 \\
3
\end{array}\right]
$$

Find the matrix of the orthogonal projection onto W.
3. (10pts) Use Cramer's rule to solve the system

$$
\left\{\begin{array}{r}
x_{1}+x_{3}=1 \\
2 x_{1}-4 x_{2}+5 x_{3}=0 \\
-2 x_{2}-x_{3}=4
\end{array} .\right.
$$

4. (10pts) Find the determinant of

$$
A=\left[\begin{array}{cccc}
1 & 0 & 2 & -5 \\
-2 & 0 & 3 & 1 \\
3 & 2 & 0 & 1 \\
0 & -1 & 7 & 2
\end{array}\right]
$$

5. (10pts) Find the trigonometric function of the form

$$
f(t)=c_{0}+c_{1} \sin (t)+c_{2} \cos (t)
$$

that best fits the data points $(0,-1),\left(\frac{\pi}{2}, 2\right),(\pi, 2)$ and $\left(\frac{3 \pi}{2}, 1\right)$, using lease squares.
6. (20pts) Find the $Q R$ factorization of

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & -2 \\
-1 & 1 & 0
\end{array}\right]
$$

7. (10pts) Find the matrix of the linear transformation,

$$
T(M)=\left[\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right] M
$$

from $M_{2 \times 2}$ to $M_{2 \times 2}$ with respect to the basis,

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right],\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
1 & 2
\end{array}\right],\left[\begin{array}{cc}
0 & -1 \\
0 & 1
\end{array}\right]
$$

and determine whether T is an isomorphism.
8. (10pts) Let V and W be linear spaces. Let T be an isomorphism from V to W. Assume that $f_{1}, f_{2}, \cdots, f_{n}$ form a basis of V. Show that $T\left(f_{1}\right), T\left(f_{2}\right), \cdots, T\left(f_{n}\right)$ is a basis of W.

