
110.202 Linear Algebra
Midterm 2 Solutions

1. (20pts) (a) Find an orthonormal basis of the space P1 with inner product

hf, gi =
Z 1

0

f (t) g (t) dt.

(b) Find the linear polynomial g (t) = a + bt that best approxi-
mates the function f (t) = t2 in the interval [0, 1] in the (con-
tinuous) least-squares sense.

[Solution]

(a) In P1, we have a standard basis {1, t}. By using Grad-Schmidt
process with inner product hf, gi = R 1

0
f (t) g (t) dt, we have

g1 (t) =
1

k1k =
1qR 1

0
1 · 1dt

= 1

and

g2 (t) =
t− h1, ti 1
kt− h1, ti 1k =

t− R 1
0
tdt°°°t− R 10 tdt°°° =

t− 1
2°°t− 1
2

°°
=

t− 1
2qR 1

0

¡
t− 1

2

¢2
dt
=
√
3 (2t− 1) .

Therefore, g1 (t) and g2 (t) form a orthonormal basis of P1 with
inner product hf, gi = R 1

0
f (t) g (t) dt.

(b) By Fact 5.5.3 in the textbook, to find a linear polynomial
g (t) = a + bt that best approximates the function f (t) = t2

in the interval [0, 1] in the (continuous) least-squares sense, we
are looking for the projection of t2 onto P1, projP1 t

2. With
1



2

respect to the inner product hf, gi = R 1
0
f (t) g (t) dt, we have

projP1 t
2 =


g1 (t) , t

2
®
g1 (t) +


g2 (t) , t

2
®
g2 (t)

=

µZ 1

0

1 · t2dt
¶
1

+

µZ 1

0

³√
3 (2t− 1)

´
t2dt

¶√
3 (2t− 1)

=
1

3
+

Ã√
3

6

!√
3 (2t− 1)

= t− 1
6
.

So, g (t) = t − 1
6
is the best approximation of the function

f (t) = t2 in the interval [0, 1] in the (continuous) least-squares
sense.

¥
2. (10pts) Consider the subspace W of R4 spanned by the vectors

v1 =


1
1
1
1

 and v2 =


1
9
−5
3

 .
Find the matrix of the orthogonal projection onto W .

[Solution]
To get an orthonormal basis ofW , we use Gram-Schmidt process for

v1 and v2. So, we have

w1 =
v1
kv1k =

1√
12 + 12 + 12 + 12


1
1
1
1

 =


1
2
1
2
1
2
1
2


and

w2 =
v2 − (w1 · v2)w1
kv2 − (w1 · v2)w1k =


− 1
10
7
10− 7
10
1
10

 .
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Set

A =
£
w1 w2

¤
=


1
2
− 1
10

1
2

7
10

1
2
− 7
10

1
2

1
10

 .
By theorem derived on the textbook, we have the matrix of the pro-
jection onto W is AAT ,

AAT =


1
2
− 1
10

1
2

7
10

1
2
− 7
10

1
2

1
10

 · 1
2

1
2

1
2

1
2− 1

10
7
10
− 7
10

1
10

¸
=


13
50

9
50

8
25

6
25

9
50

37
50

− 6
25

8
25

8
25
− 6
25

37
50

9
50

6
25

8
25

9
50

13
50

 .
¥

3. (10pts) Use Cramer’s rule to solve the system x1 + x3 = 1
2x1 − 4x2 + 5x3 = 0

− 2x2 − x3 = 4
.

[Solution]

Let A =

 1 0 1
2 −4 5
0 −2 −1

 and b =

 10
4

.We have det (A) = 10 6= 0.
Therefore, we can use Cramer’s rule to get the solution x =

 x1
x2
x3

 for
the system Ax = b. Let A1 =

 1 0 1
0 −4 5
4 −2 −1

 and det (A1) = 30. Let
A2 =

 1 1 1
2 0 5
0 4 −1

 and det (A2) = −10. Let A3 =
 1 0 1
2 −4 0
0 −2 4

 and
det (A3) = −20. By Cramer’s rule, we have

x1 =
det (A1)

det (A)
=
30

10
= 3,

x2 =
det (A2)

det (A)
=
−10
10

= −1,

x3 =
det (A3)

det (A)
=
−20
10

= −2.
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Therefore, the solution is x =

 x1
x2
x3

 =
 3
−1
−2

.
¥

4. (10pts) Find the determinant of

A =


1 0 2 −5
−2 0 3 1
3 2 0 1
0 −1 7 2

 .
[Solution]
By using Laplace expansion, we have

det (A) = det


1 0 2 −5
−2 0 3 1
3 2 0 1
0 −1 7 2


= −2 det

 1 2 −5
−2 3 1
0 7 2

+ (−1) det
 1 2 −5
−2 3 1
3 0 1


= (−2)

µ
1 det

·
3 1
7 2

¸
− (−2) det

·
2 −5
7 2

¸¶
+(−1)

µ
−2 det

· −2 1
3 1

¸
+ 3det

·
1 −5
3 1

¸¶
= (−2) 1 (6− 7)− (−2) (−2) (4 + 35)

+ (−1) (−2) (−2− 3) + (−1) 3 (1 + 15)
= −212.

¥
5. (10pts) Find the trigonometric function of the form

f (t) = c0 + c1 sin (t) + c2 cos (t)

that best fits the data points (0,−1), ¡π
2
, 2
¢
, (π, 2) and

¡
3π
2
, 1
¢
,

using lease squares.

[Solution]
We want to find a f (t) = c0 + c1 sin (t) + c2 cos (t) such that f (0) =
−1, f ¡π

2

¢
= 2, f (π) = 2 and f

¡
3π
2

¢
= 1. These conditions give the
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system of linear equations
c0 + c1 sin (0) + c2 cos (0) = f (0) = −1
c0 + c1 sin

¡
π
2

¢
+ c2 cos

¡
π
2

¢
= f

¡
π
2

¢
= 2

c0 + c1 sin (π) + c2 cos (π) = f (π) = 2
c0 + c1 sin

¡
3π
2

¢
+ c2 cos

¡
3π
2

¢
= f

¡
3π
2

¢
= 1

,

or, 
c0 + c2 = −1
c0 + c1 = 2
c0 − c2 = 2
c0 − c1 = 1

.

Let A =


1 0 1
1 1 0
1 0 −1
1 −1 0

, x =
 c0

c1
c2

 and b =


−1
2
2
1

. We can

write the system as Ax = b. Since rref (A) =


1 0 0
0 1 0
0 0 1
0 0 0

, we have
ker (A) = {0}. So, the unique least-squares solution of Ax = b is

x∗ =
¡
ATA

¢−1
AT b

=


 1 1 1 1
0 1 0 −1
1 0 −1 0



1 0 1
1 1 0
1 0 −1
1 −1 0



−1  1 1 1 1

0 1 0 −1
1 0 −1 0



−1
2
2
1



=

 1
4
0 0

0 1
2
0

0 0 1
2

 1 1 1 1
0 1 0 −1
1 0 −1 0



−1
2
2
1


=

 1
1
2−3
2

 .
Moreover, the trigonometric function,

f∗ (t) = 1 +
1

2
sin (t)− 3

2
cos (t) ,

best fits the data points (0,−1), ¡π
2
, 2
¢
, (π, 2) and

¡
3π
2
, 1
¢
in the least-

squares sense.
¥
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6. (20pts) Find the QR factorization of

A =

 1 0 1
0 −1 −2
−1 1 0

 .
[Solution]

Let v1 =

 1
0
−1

, v2 =
 0
−1
1

 and v3 =

 1
−2
0

. Set A =£
v1 v2 v3

¤
and Q =

£
w1 w2 w3

¤
. By QR decomposition pro-

cess, we calculate the following:

r11 = kv1k =
q
12 + 02 + (−1)2 = √2,

w1 =
v1
kv1k =

1√
2

 1
0
−1

 =
 1√

2

0
− 1√

2

 ,
r12 = w1 · v2 = 1√

2
· 0 + 0 · (−1) +

µ
− 1√

2

¶
· 1 = − 1√

2
,

u2 = v2 − (w1 · v2)w1 =
 0
−1
1

+ 1√
2

 1√
2

0
− 1√

2

 =
 1

2−1
1
2

 ,
r22 = kv2 − (w1 · v2)w1k = ku2k =

sµ
1

2

¶2
+ (−1)2 +

µ
1

2

¶2
=

√
6

2
,

w2 =
v2 − (w1 · v2)w1
kv2 − (w1 · v2)w1k =

u2
ku2k =

2√
6

 1
2−1
1
2

 =
 1√

6

− 2√
6

1√
6

 ,
r13 = w1 · v3 = 1√

2
· 1 + 0 · (−2) +

µ
− 1√

2

¶
· 0 = 1√

2
,

r23 = w2 · v3 = 1√
6
· 1 +

µ
− 2√

6

¶
· (−2) +

µ
1√
6

¶
· 0 = 5√

6
,

u3 = v3 − (w1 · v3)w1 − (w2 · v3)w2 = v3 − r13w1 − r23w2

=

 1
−2
0

− 1√
2

 1√
2

0
− 1√

2

− 5√
6

 1√
6

− 2√
6

1√
6

 =
 −13−1

3−1
3

 ,
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r33 = kv3 − (w1 · v3)w1 − (w2 · v3)w2k = ku3k

=

sµ
−1
3

¶2
+

µ
−1
3

¶2
+

µ
−1
3

¶2
=

1√
3
,

w3 =
v3 − r13w1 − r23w2
kv3 − r13w1 − r23w2k =

u3
ku3k =

√
3

 −13−1
3−1
3

 =
 − 1√

3

− 1√
3

− 1√
3

 .
By definition, we have

Q =
£
w1 w2 w3

¤
=

 1√
2

1√
6
− 1√

3

0 − 2√
6
− 1√

3

− 1√
2

1√
6
− 1√

3


and

R =

 r11 r12 r13
0 r22 r23
0 0 r33

 =

√
2 − 1√

2
1√
2

0
√
6
2

5√
6

0 0 1√
3

 .
And, A = QR.
¥

7. (10pts) Find the matrix of the linear transformation,

T (M) =

·
0 1
0 −1

¸
M

from M2×2 to M2×2 with respect to the basis,

·
1 0
−1 0

¸
,

·
2 1
0 0

¸
,

·
0 0
1 2

¸
,

·
0 −1
0 1

¸

and determine whether T is an isomorphism.

[Solution]
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Let M1 =

·
1 0
−1 0

¸
, M2 =

·
2 1
0 0

¸
, M3 =

·
0 0
1 2

¸
and M4 =·

0 −1
0 1

¸
form our basis B. And, we have

T (M1) =

·
0 1
0 −1

¸ ·
1 0
−1 0

¸
=

· −1 0
1 0

¸
,

T (M2) =

·
0 1
0 −1

¸ ·
2 1
0 0

¸
=

·
0 0
0 0

¸
,

T (M3) =

·
0 1
0 −1

¸ ·
0 0
1 2

¸
=

·
1 2
−1 −2

¸
,

T (M4) =

·
0 1
0 −1

¸ ·
0 −1
0 1

¸
=

·
0 1
0 −1

¸
.

To get the matrix of T , we have to write them in term of linear com-
bonations of our basis B first. (Note: SinceM1,M2,M3 andM4 form a
basis of our space, the linear combination expression is unique. There-
fore if you can find a linear combination expression, then that is the
one, no matter how you find it. You can guess, observe, or use system
of equations with Gauss-Jordan elimination. Either way is fine if you
can find a linear combination expression.) So,

[T (M1)]B = (−1)M1 + 0M2 + 0M3 + 0M4 =


−1
0
0
0


B

,

[T (M2)]B = 0M1 + 0M2 + 0M3 + 0M4 =


0
0
0
0


B

,

[T (M3)]B = 1M1 + 0M2 + 3M3 + (−2)M4 =


1
0
0
−2


B

,

[T (M4)]B = 0M1 + 0M2 + 0M3 + (−1)M4 =


0
0
0
−1


B

.
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Write them as columns of the matrix B. We have

B =


−1 0 1 0
0 0 0 0
0 0 0 0
0 0 −2 −1

 .

Since, obviously, rref B =


1 0 0 1

2
0 0 1 1

2
0 0 0 0
0 0 0 0

 6= I4, we know B is not

invertible. That means T is not invertible. So, T is not an isomor-
phism. (Note: you have to use the representation matrix of T which is
B to use any theorem we have already derived. Even though, in this

case, T (M) =
·
0 1
0 −1

¸
M is already written as a matrix multiply a

variable. But, by definition,
·
0 1
0 −1

¸
is not our B matrix, the repre-

sentation matrix of T . So, to determine whether T is an isomorphism,

you have to use B, not
·
0 1
0 −1

¸
.)

¥
8. (10pts) Let V and W be linear spaces. Let T be an isomorphism from V

to W . Assume that f1, f2, · · · , fn form a basis of V . Show that
T (f1) , T (f2) , · · · , T (fn) is a basis of W .

[Solution]
To show that T (f1) , T (f2) , · · · , T (fn) are linearly independent, we

assume c1T (f1) + c2T (f2) + · · · + cnT (fn) = 0. Hence, we have
T (c1f1 + · · ·+ cnfn) = 0 since T is a linear transformation. Since
T is an isomorphism from V to W , we have T is invertible, that
means, ker (T ) = {0}. This implies c1f1 + · · · + cnfn = 0. Moreover,
f1, f2, · · · , fn form a basis of V . This condition forces that c1 = c2 =
· · · = cn = 0. So, T (f1) , T (f2) , · · · , T (fn) are linearly independent.
Since T is an isomorphism from V to W , we have T−1 is an isomor-

phism from W to V such that T (T−1 (g)) = g for all g ∈ W . For all
g ∈ W , we have T−1 (g) ∈ V . Since f1, f2, · · · , fn form a basis of V ,
there exist t1, t2, · · · , tn such that T−1 (g) = t1f1+· · ·+tnfn. Therefore,
g = T (T−1 (g)) = T (t1f1 + · · ·+ tnfn) = t1T (f1) + · · · tnT (fn). That
means g is a linear combination of T (f1) , T (f2) , · · · , T (fn). And, ob-
viously, T (f1) , T (f2) , · · · , T (fn) are all in W . Thus, we can conclude
that W = span {T (f1) , T (f2) , · · · , T (fn)}.
So, T (f1) , T (f2) , · · · , T (fn) form a basis of W
¥


