110.202 Linear Algebra

Midterm 2 Solutions

1. (20pts) (a) Find an orthonormal basis of the space P_1 with inner product

$$\langle f,g \rangle = \int_{0}^{1} f(t) g(t) dt.$$

(b) Find the linear polynomial g(t) = a + bt that best approximates the function $f(t) = t^2$ in the interval [0, 1] in the (continuous) least-squares sense.

[Solution]

(a) In P_1 , we have a standard basis $\{1, t\}$. By using Grad-Schmidt process with inner product $\langle f, g \rangle = \int_0^1 f(t) g(t) dt$, we have

$$g_1(t) = \frac{1}{\|1\|} = \frac{1}{\sqrt{\int_0^1 1 \cdot 1dt}} = 1$$

and

$$g_{2}(t) = \frac{t - \langle 1, t \rangle 1}{\|t - \langle 1, t \rangle 1\|} = \frac{t - \int_{0}^{1} t dt}{\|t - \int_{0}^{1} t dt\|} = \frac{t - \frac{1}{2}}{\|t - \frac{1}{2}\|}$$
$$= \frac{t - \frac{1}{2}}{\sqrt{\int_{0}^{1} (t - \frac{1}{2})^{2} dt}} = \sqrt{3} (2t - 1).$$

Therefore, $g_1(t)$ and $g_2(t)$ form a orthonormal basis of P_1 with inner product $\langle f, g \rangle = \int_0^1 f(t) g(t) dt$. (b) By Fact 5.5.3 in the textbook, to find a linear polynomial

(b) By Fact 5.5.3 in the textbook, to find a linear polynomial g(t) = a + bt that best approximates the function $f(t) = t^2$ in the interval [0, 1] in the (continuous) least-squares sense, we are looking for the projection of t^2 onto P_1 , $\operatorname{proj}_{P_1} t^2$. With

respect to the inner product $\langle f, g \rangle = \int_0^1 f(t) g(t) dt$, we have

$$proj_{P_1} t^2 = \langle g_1(t), t^2 \rangle g_1(t) + \langle g_2(t), t^2 \rangle g_2(t)$$

$$= \left(\int_0^1 1 \cdot t^2 dt \right) 1$$

$$+ \left(\int_0^1 \left(\sqrt{3} (2t - 1) \right) t^2 dt \right) \sqrt{3} (2t - 1)$$

$$= \frac{1}{3} + \left(\frac{\sqrt{3}}{6} \right) \sqrt{3} (2t - 1)$$

$$= t - \frac{1}{6}.$$

So, $g(t) = t - \frac{1}{6}$ is the best approximation of the function $f(t) = t^2$ in the interval [0, 1] in the (continuous) least-squares sense.

2. (10pts) Consider the subspace W of \mathbb{R}^4 spanned by the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} \text{ and } \vec{v}_2 = \begin{bmatrix} 1\\9\\-5\\3 \end{bmatrix}.$$

Find the matrix of the orthogonal projection onto W.

[Solution]

To get an orthonormal basis of W, we use Gram-Schmidt process for \vec{v}_1 and \vec{v}_2 . So, we have

$$\vec{w}_1 = \frac{\vec{v}_1}{\|v_1\|} = \frac{1}{\sqrt{1^2 + 1^2 + 1^2}} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2} \end{bmatrix}$$

and

$$\vec{w}_2 = \frac{\vec{v}_2 - (\vec{w}_1 \cdot \vec{v}_2) \, \vec{w}_1}{\|\vec{v}_2 - (\vec{w}_1 \cdot \vec{v}_2) \, \vec{w}_1\|} = \begin{bmatrix} -\frac{1}{10} \\ \frac{7}{10} \\ -\frac{7}{10} \\ \frac{1}{10} \end{bmatrix}.$$

$$A = \begin{bmatrix} \vec{w_1} & \vec{w_2} \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{10} \\ \frac{1}{2} & \frac{1}{10} \\ \frac{1}{2} & -\frac{7}{10} \\ \frac{1}{2} & \frac{1}{10} \end{bmatrix}.$$

By theorem derived on the textbook, we have the matrix of the projection onto W is $AA^{T},$

$$AA^{T} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{10} \\ \frac{1}{2} & \frac{7}{10} \\ \frac{1}{2} & -\frac{7}{10} \\ \frac{1}{2} & \frac{1}{10} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{10} & \frac{7}{10} & -\frac{7}{10} & \frac{1}{10} \end{bmatrix} = \begin{bmatrix} \frac{13}{50} & \frac{9}{50} & \frac{8}{25} & \frac{6}{25} \\ \frac{9}{50} & \frac{37}{50} & -\frac{6}{25} & \frac{8}{25} \\ \frac{8}{25} & -\frac{6}{25} & \frac{37}{50} & \frac{9}{50} \\ \frac{8}{25} & \frac{8}{25} & \frac{9}{50} & \frac{13}{50} \end{bmatrix}.$$

3. (10pts) Use Cramer's rule to solve the system

$$\begin{cases} x_1 + x_3 = 1\\ 2x_1 - 4x_2 + 5x_3 = 0\\ - 2x_2 - x_3 = 4 \end{cases}$$
[Solution]
Let $A = \begin{bmatrix} 1 & 0 & 1\\ 2 & -4 & 5\\ 0 & -2 & -1 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} 1\\ 0\\ 4 \end{bmatrix}$. We have det $(A) = 10 \neq 0$.
Therefore, we can use Cramer's rule to get the solution $\vec{x} = \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix}$ for
the system $A\vec{x} = \vec{b}$. Let $A_1 = \begin{bmatrix} 1 & 0 & 1\\ 0 & -4 & 5\\ 4 & -2 & -1 \end{bmatrix}$ and det $(A_1) = 30$. Let
 $A_2 = \begin{bmatrix} 1 & 1 & 1\\ 2 & 0 & 5\\ 0 & 4 & -1 \end{bmatrix}$ and det $(A_2) = -10$. Let $A_3 = \begin{bmatrix} 1 & 0 & 1\\ 2 & -4 & 0\\ 0 & -2 & 4 \end{bmatrix}$ and
det $(A_3) = -20$. By Cramer's rule, we have
 $x_1 = \frac{\det(A_1)}{\det(A_1)} = \frac{30}{4} = 3$.

$$x_{1} = \frac{\det(A)}{\det(A)} = \frac{10}{10} = 3,$$

$$x_{2} = \frac{\det(A_{2})}{\det(A)} = \frac{-10}{10} = -1,$$

$$x_{3} = \frac{\det(A_{3})}{\det(A)} = \frac{-20}{10} = -2.$$

Therefore, the solution is
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ -2 \end{bmatrix}$$
.

4. (10pts) Find the determinant of

4

$$A = \begin{bmatrix} 1 & 0 & 2 & -5 \\ -2 & 0 & 3 & 1 \\ 3 & 2 & 0 & 1 \\ 0 & -1 & 7 & 2 \end{bmatrix}.$$

[Solution]

By using Laplace expansion, we have

$$det (A) = det \begin{bmatrix} 1 & 0 & 2 & -5 \\ -2 & 0 & 3 & 1 \\ 3 & 2 & 0 & 1 \\ 0 & -1 & 7 & 2 \end{bmatrix}$$
$$= -2 det \begin{bmatrix} 1 & 2 & -5 \\ -2 & 3 & 1 \\ 0 & 7 & 2 \end{bmatrix} + (-1) det \begin{bmatrix} 1 & 2 & -5 \\ -2 & 3 & 1 \\ 3 & 0 & 1 \end{bmatrix}$$
$$= (-2) \left(1 det \begin{bmatrix} 3 & 1 \\ 7 & 2 \end{bmatrix} - (-2) det \begin{bmatrix} 2 & -5 \\ 7 & 2 \end{bmatrix} \right)$$
$$+ (-1) \left(-2 det \begin{bmatrix} -2 & 1 \\ 3 & 1 \end{bmatrix} + 3 det \begin{bmatrix} 1 & -5 \\ 3 & 1 \end{bmatrix} \right)$$
$$= (-2) 1 (6 - 7) - (-2) (-2) (4 + 35)$$
$$+ (-1) (-2) (-2 - 3) + (-1) 3 (1 + 15)$$
$$= -212.$$

5. (10pts) Find the trigonometric function of the form

$$f(t) = c_0 + c_1 \sin(t) + c_2 \cos(t)$$

that best fits the data points (0, -1), $(\frac{\pi}{2}, 2)$, $(\pi, 2)$ and $(\frac{3\pi}{2}, 1)$, using lease squares.

[Solution]

We want to find a $f(t) = c_0 + c_1 \sin(t) + c_2 \cos(t)$ such that f(0) = -1, $f\left(\frac{\pi}{2}\right) = 2$, $f(\pi) = 2$ and $f\left(\frac{3\pi}{2}\right) = 1$. These conditions give the

system of linear equations

$$\begin{cases} c_0 + c_1 \sin(0) + c_2 \cos(0) = f(0) = -1 \\ c_0 + c_1 \sin\left(\frac{\pi}{2}\right) + c_2 \cos\left(\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}\right) = 2 \\ c_0 + c_1 \sin(\pi) + c_2 \cos(\pi) = f(\pi) = 2 \\ c_0 + c_1 \sin\left(\frac{3\pi}{2}\right) + c_2 \cos\left(\frac{3\pi}{2}\right) = f\left(\frac{3\pi}{2}\right) = 1 \end{cases}$$

or,

$$\begin{cases} c_0 & + c_2 = -1 \\ c_0 + c_1 & = 2 \\ c_0 & - c_2 = 2 \\ c_0 - c_1 & = 1 \end{cases}$$

Let $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}, \ \vec{x} = \begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix} \text{ and } \vec{b} = \begin{bmatrix} -1 \\ 2 \\ 2 \\ 1 \end{bmatrix}.$ We can write the system as $A\vec{x} = \vec{b}$. Since $\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, we have

write the system as $A\vec{x} = \vec{b}$. Since rref $(A) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$, we have $\ker(A) = \{0\}$. So the unique least-squares solution of $A\vec{x} = \vec{b}$ is

$$\begin{aligned} &\text{ker} (A) = \{0\}. \text{ So, the unique least-squares solution of } Ax = b \text{ is} \\ &\vec{x}^* = (A^T A)^{-1} A^T \vec{b} \\ &= \left(\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 1 \\ 1 \\ 0 & -1 & 0 \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 2 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 \\ \frac{1}{2} \\ -\frac{3}{2} \end{bmatrix}. \end{aligned}$$

Moreover, the trigonometric function,

$$f^{*}(t) = 1 + \frac{1}{2}\sin(t) - \frac{3}{2}\cos(t),$$

best fits the data points (0, -1), $(\frac{\pi}{2}, 2)$, $(\pi, 2)$ and $(\frac{3\pi}{2}, 1)$ in the least-squares sense.

6. (20pts) Find the QR factorization of

$$A = \left[\begin{array}{rrrr} 1 & 0 & 1 \\ 0 & -1 & -2 \\ -1 & 1 & 0 \end{array} \right].$$

[Solution] Let $\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ and $\vec{v}_3 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$. Set $A = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix}$ and $Q = \begin{bmatrix} \vec{w}_1 & \vec{w}_2 & \vec{w}_3 \end{bmatrix}$. By QR decomposition process, we calculate the following:

$$\begin{split} r_{11} &= \|\vec{v}_1\| = \sqrt{1^2 + 0^2 + (-1)^2} = \sqrt{2}, \\ \vec{w}_1 &= \frac{\vec{v}_1}{\|\vec{v}_1\|} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0\\-1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\-\frac{1}{\sqrt{2}} \end{bmatrix}, \\ r_{12} &= \vec{w}_1 \cdot \vec{v}_2 = \frac{1}{\sqrt{2}} \cdot 0 + 0 \cdot (-1) + \left(-\frac{1}{\sqrt{2}}\right) \cdot 1 = -\frac{1}{\sqrt{2}}, \\ \vec{u}_2 &= \vec{v}_2 - (\vec{w}_1 \cdot \vec{v}_2) \vec{w}_1 = \begin{bmatrix} 0\\-1\\1 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\-\frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\-1\\\frac{1}{2} \end{bmatrix}, \\ r_{22} &= \|\vec{v}_2 - (\vec{w}_1 \cdot \vec{v}_2) \vec{w}_1\| = \|\vec{u}_2\| = \sqrt{\left(\frac{1}{2}\right)^2 + (-1)^2 + \left(\frac{1}{2}\right)^2} = \frac{\sqrt{6}}{2}, \\ \vec{w}_2 &= \frac{\vec{v}_2 - (\vec{w}_1 \cdot \vec{v}_2) \vec{w}_1}{\|\vec{v}_2 - (\vec{w}_1 \cdot \vec{v}_2) \vec{w}_1\|} = \frac{\vec{u}_2}{\|\vec{u}_2\|} = \frac{2}{\sqrt{6}} \begin{bmatrix} \frac{1}{2}\\-1\\\frac{1}{2} \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{6}}\\-\frac{1}{\sqrt{6}}\\\frac{1}{\sqrt{6}} \end{bmatrix}, \\ r_{13} &= \vec{w}_1 \cdot \vec{v}_3 = \frac{1}{\sqrt{2}} \cdot 1 + 0 \cdot (-2) + \left(-\frac{1}{\sqrt{2}}\right) \cdot 0 = \frac{1}{\sqrt{2}}, \\ r_{23} &= \vec{w}_2 \cdot \vec{v}_3 = \frac{1}{\sqrt{6}} \cdot 1 + \left(-\frac{2}{\sqrt{6}}\right) \cdot (-2) + \left(\frac{1}{\sqrt{6}}\right) \cdot 0 = \frac{5}{\sqrt{6}}, \\ \vec{u}_3 &= \vec{v}_3 - (\vec{w}_1 \cdot \vec{v}_3) \vec{w}_1 - (\vec{w}_2 \cdot \vec{v}_3) \vec{w}_2 = \vec{v}_3 - r_{13} \vec{w}_1 - r_{23} \vec{w}_2 \\ &= \begin{bmatrix} 1\\-2\\0 \end{bmatrix} - \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\-\frac{1}{\sqrt{2}} \end{bmatrix} - \frac{5}{\sqrt{6}} \begin{bmatrix} -\frac{1}{\sqrt{6}}\\-\frac{1}{\sqrt{6}}\\-\frac{1}{\sqrt{6}} \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{3}}\\-\frac{1}{$$

$$\begin{aligned} r_{33} &= \|\vec{v}_3 - (\vec{w}_1 \cdot \vec{v}_3) \, \vec{w}_1 - (\vec{w}_2 \cdot \vec{v}_3) \, \vec{w}_2\| = \|\vec{u}_3\| \\ &= \sqrt{\left(-\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right)^2 + \left(-\frac{1}{3}\right)^2} = \frac{1}{\sqrt{3}}, \\ \vec{w}_3 &= \frac{\vec{v}_3 - r_{13}\vec{w}_1 - r_{23}\vec{w}_2}{\|\vec{v}_3 - r_{13}\vec{w}_1 - r_{23}\vec{w}_2\|} = \frac{\vec{u}_3}{\|\vec{u}_3\|} = \sqrt{3} \begin{bmatrix} -\frac{1}{3}\\ -\frac{1}{3}\\ -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{3}}\\ -\frac{1}{\sqrt{3}}\\ -\frac{1}{\sqrt{3}} \end{bmatrix}. \end{aligned}$$

By definition, we have

$$Q = \begin{bmatrix} \vec{w}_1 & \vec{w}_2 & \vec{w}_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$

and

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix} = \begin{bmatrix} \sqrt{2} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{\sqrt{6}}{2} & \frac{5}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{3}} \end{bmatrix}.$$

And, A = QR.

7. (10pts) Find the matrix of the linear transformation,

$$T\left(M\right) = \left[\begin{array}{cc} 0 & 1\\ 0 & -1 \end{array}\right] M$$

from $M_{2\times 2}$ to $M_{2\times 2}$ with respect to the basis,

$$\left[\begin{array}{rrr}1&0\\-1&0\end{array}\right], \left[\begin{array}{rrr}2&1\\0&0\end{array}\right], \left[\begin{array}{rrr}0&0\\1&2\end{array}\right], \left[\begin{array}{rrr}0&-1\\0&1\end{array}\right]$$

and determine whether T is an isomorphism.

[Solution]

Let
$$M_1 = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix}$$
, $M_2 = \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}$, $M_3 = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$ and $M_4 = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}$ form our basis \mathcal{B} . And, we have

$$T(M_{1}) = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 1 & 0 \end{bmatrix},$$

$$T(M_{2}) = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

$$T(M_{3}) = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix},$$

$$T(M_{4}) = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}.$$

To get the matrix of T, we have to write them in term of linear combonations of our basis \mathcal{B} first. (Note: Since M_1 , M_2 , M_3 and M_4 form a basis of our space, the linear combination expression is unique. Therefore if you can find a linear combination expression, then that is the one, no matter how you find it. You can guess, observe, or use system of equations with Gauss-Jordan elimination. Either way is fine if you can find a linear combination expression.) So,

$$[T(M_{1})]_{\mathcal{B}} = (-1)M_{1} + 0M_{2} + 0M_{3} + 0M_{4} = \begin{bmatrix} -1\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}_{\mathcal{B}}^{},$$

$$[T(M_{2})]_{\mathcal{B}} = 0M_{1} + 0M_{2} + 0M_{3} + 0M_{4} = \begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}_{\mathcal{B}}^{},$$

$$[T(M_{3})]_{\mathcal{B}} = 1M_{1} + 0M_{2} + 3M_{3} + (-2)M_{4} = \begin{bmatrix} 1\\ 0\\ 0\\ -2\\ \end{bmatrix}_{\mathcal{B}}^{},$$

$$[T(M_{4})]_{\mathcal{B}} = 0M_{1} + 0M_{2} + 0M_{3} + (-1)M_{4} = \begin{bmatrix} 0\\ 0\\ 0\\ -1\\ \end{bmatrix}_{\mathcal{B}}^{}.$$

Write them as columns of the matrix B. We have

$$B = \begin{bmatrix} -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & -1 \end{bmatrix}.$$

Since, obviously, rref $B = \begin{bmatrix} 1 & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \neq I_4$, we know B is not

invertible. That means T is not invertible. So, T is not an isomorphism. (Note: you have to use the representation matrix of T which is B to use any theorem we have already derived. Even though, in this case, $T(M) = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix} M$ is already written as a matrix multiply a variable. But, by definition, $\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$ is not our B matrix, the representation matrix of T. So, to determine whether T is an isomorphism, you have to use B, not $\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$.)

8. (10pts) Let V and W be linear spaces. Let T be an isomorphism from V to W. Assume that f_1, f_2, \dots, f_n form a basis of V. Show that $T(f_1), T(f_2), \dots, T(f_n)$ is a basis of W.

[Solution]

To show that $T(f_1), T(f_2), \dots, T(f_n)$ are linearly independent, we assume $c_1T(f_1) + c_2T(f_2) + \dots + c_nT(f_n) = 0$. Hence, we have $T(c_1f_1 + \dots + c_nf_n) = 0$ since T is a linear transformation. Since T is an isomorphism from V to W, we have T is invertible, that means, ker $(T) = \{0\}$. This implies $c_1f_1 + \dots + c_nf_n = 0$. Moreover, f_1, f_2, \dots, f_n form a basis of V. This condition forces that $c_1 = c_2 =$ $\dots = c_n = 0$. So, $T(f_1), T(f_2), \dots, T(f_n)$ are linearly independent.

Since T is an isomorphism from V to W, we have T^{-1} is an isomorphism from W to V such that $T(T^{-1}(g)) = g$ for all $g \in W$. For all $g \in W$, we have $T^{-1}(g) \in V$. Since f_1, f_2, \cdots, f_n form a basis of V, there exist t_1, t_2, \cdots, t_n such that $T^{-1}(g) = t_1f_1 + \cdots + t_nf_n$. Therefore, $g = T(T^{-1}(g)) = T(t_1f_1 + \cdots + t_nf_n) = t_1T(f_1) + \cdots + t_nT(f_n)$. That means g is a linear combination of $T(f_1), T(f_2), \cdots, T(f_n)$. And, obviously, $T(f_1), T(f_2), \cdots, T(f_n)$ are all in W. Thus, we can conclude that $W = \text{span} \{T(f_1), T(f_2), \cdots, T(f_n)\}$.

So, $T(f_1), T(f_2), \cdots, T(f_n)$ form a basis of W