Problem 1 Find the determinant of the \(n \times n \) matrix
\[
A = \begin{bmatrix}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{bmatrix}
\]

Problem 2 Let \(A \) be an \(n \times n \) matrix obeying the equation
\[A^2 = A. \]

a) What are the possible values of \(\det(A) \)? Why?

b) Let \(V \) be the image of \(A \) and \(m = \dim V \) Find all relationships between \(m, n \) and the values for \(\det(A) \) you found above.

[An acceptable statement would be something like “If \(\det(A) = \ldots \), then \(\ldots \).”]

Can \(m = n \)? If so, and \(m = n \), what can you say about \(A \)?

Problem 3 Suppose that two square matrices satisfy the following identity \(AB = -BA \). Find the flaw in the following argument, showing a counterexample:

Taking determinants gives \(\det(A)(\det B) = -(\det B)(\det A) \), so either \(A \) or \(B \) must have zero determinant. Thus \(AB = -BA \) is only possible if \(A \) or \(B \) is singular.