
Past Exam Problems in Integrals, Solutions

Prof. Qiao Zhang
Course 110.202

December 7, 2004

Note: These problems do not imply, in any sense, my taste or prefer-
ence for our own exam. Some of the problems here may be more (or less)
challenging than what will appear in our exam.

1. According to the hint (use the hint, please!), if there exists such a G,
then we should have

div(curlG) = ∇ · (∇×G) = 0.

However, direct computations give us that

div(curlG) =
∂(2x)

∂x
+

∂(3yz)

∂y
− ∂(xz2)

∂z
= 2 + 3z − 2xz 6= 0.

This leads to a contradiction. Hence there is no such vector field G.

Remark. You may observe that div(curlG) = 0 for some special
values of x, y and z. For example, we have div(curlG)(0, 1,−2

3
) = 0.

However, what we need is that div(curlG) = 0 as a function, i.e. for
every possible values of x, y and z, and this is where we find the
contradiction.

2. (a) Green’s Theorem. Let D be a simple region and let C be its
boundary. Suppose P : D → R and Q : D → R are of class C1.
Then ∫

C+

P dx + Q dy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dx dy.
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(b) By Green’s Theorem, we have∫
C

(1 + y8) dx + (x2 + ey) dy =

∫∫
D

(2x− 8y7) dx dy

=

∫ 1

0

∫ √
x

0

(2x− 8y7) dy dx

=

∫ 1

0

(2x
3
2 − x4) dx =

3

5
.

Remark. Yes, I copied Green’s Theorem from our textbook, Page 522.
In practice we do not need to remember every word in this theorem;
what is really important is the formula itself and the relation between
C and D, especially the compatibility of their orientations.

3. (a) Gauss’ Divergence Theorem. Let W be a symmetric elemen-
tary region in space. Denote by ∂W the oriented closed surface
that bounds W . Let F be a smooth vector field defined on W .
Then ∫∫∫

W

(∇ · F) dV =

∫∫
∂W

F · dS,

i.e. ∫∫∫
W

(div F) dV =

∫∫
∂W

F · n dS.

(b) We have ∇ · F = 3y, so Gauss’ Divergence Theorem gives∫∫
S

F · n dS =

∫∫∫
W

3y dV =

∫ 1

−1

∫ 1−x2

0

∫ 5

0

3y dy dz dx

=

∫ 1

−1

(1− x2) dx ·
∫ 5

0

3y dy =
4

3
× 75

2
= 50.

Remark. Again I copied Gauss’ Divergence Theorem from our text-
book, this time from Page 564, and again what is really important is
the formula itself and the relation between W and ∂W . Another im-
portant but subtle thing is the requirement for F. In some cases (like
here) it has to be smooth everywhere, but in some cases (like in the
three-dimensional Stokes’ Theorem) it may have finitely many excep-
tional points. A practical attitude on this issue is that we always keep
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ourselves on the safe side and play with only smooth vector fields; if it
has any exceptional points on the surface or in the solid region, then
check the precise statement of the corresponding theorem before our
computations. Do not blindly apply these theorems in such cases.

4. (a) Direct computation shows that curlF = 0.

(b) For the potential function, we may start from (0, 0, 0) to get

f(x, y, z) =

∫ x

0

F(t, 0, 0) · (1, 0, 0) dt +

∫ y

0

F(x, t, 0) · (0, 1, 0) dt

+

∫ z

0

F(x, y, t) · (0, 0, 1) dt

=

∫ x

0

2t dt +

∫ y

0

(2xt + 3t2) dt = x2 + xy2 + y3.

(c) Since F is conservative, we have∫
C

F · ds = F(π/2, 1, 0)− F(0, 0, 0) =
π2

4
+

π

2
+ 1.

5. By Gauss’ Divergence Theorem, we have∫∫
S

v · dS =

∫∫∫
Ω

div v dV

=

∫ 1

−1

∫ 1

−1

∫ 1

−1

(2y + 1− 2y + 1) dV

= 2

∫ 1

−1

∫ 1

−1

∫ 1

−1

dV = 16.

Remark. Although this problem specifically asks us to use Gauss’
Divergence Theorem, it will be a good exercise just directly compute
the total flux, which involves six surface integral. Each integral is not
hard, but it is not trivial to always choose the right orientation and to
stay away from simple mistakes.

6. (a) By Stokes’ Theorem, we have∫
C

G · ds =

∫∫
S

curlG · dS,
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where S is the square with vertices at the origin and (0, 2, 0),
(0, 2, 2), (0, 0, 2) with orientation pointing to the positive direction
of the x-axis.

(b) We have
curlG = (3, y2, 2xy − 2yz).

To parametrize S, we note that it is spanned by the vectors v1 =
(0, 2, 0)−(0, 0, 0) = (0, 2, 0) and v2 = (0, 0, 2)−(0, 0, 0) = (0, 0, 2),
so we may naturally choose the parametrization

Φ(u, v) = uv1 + vv2 + (0, 0, 0) = (0, 2u, 2v) 0 ≤ u, v ≤ 1,

i.e. with

x(u, v) = 0, y(u, v) = 2u, z(u, v) = 2v.

Since

Φu(u, v)× Φv(u, v) = (0, 2, 0)× (0, 0, 2) = (4, 0, 0),

this is an orientation-preserving parametrization, so∫
C

G · ds =

∫∫
S

curlG · dS

=

∫ 1

0

∫ 1

0

(3, 4u2,−4uv) · (Φu(u, v)× Φv(u, v)) du dv

=

∫ 1

0

∫ 1

0

(3, 4u2,−4uv) · (4, 0, 0) du dv

= 12

∫ 1

0

∫ 1

0

du dv = 12.

Remark. For Part (a), when we describe S, do not forget to mention
its orientation. For Part (b), do not forget to check the orientation
of our parametrization, and if you draw a diagram beforehand (which
I should have done but failed to do), then you may find a simpler
parametrization Φ(u, v) = (0, u, v). Furthermore, is it that difficult to
do the line integral directly? Maybe tedious, but not that hard. Wanna
give it a try?
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7. (a) For this part, I give up. I never know how to draw a graph in
LATEX(the language that this and the other lectures are written
with), so please excuse me... Described in words, it is the region
bounded by x = y2 (i.e. y = ±

√
x) and x = 4.

(b) For this part, I can do it. By observing the diagram that is not
shown here, we have∫ 2

−2

(∫ 4

y2

√
xy2ex3

dx

)
dy =

∫ 4

0

∫ √
x

−
√

x

√
xy2ex3

dy dx.

(c) We have∫ 2

−2

(∫ 4

y2

√
xy2ex3

dx

)
dy =

∫ 4

0

√
xex3

(∫ √
x

−
√

x

y2 dy

)
dx

=

∫ 4

0

√
xex3

(
y3

3

∣∣∣√x

−
√

x

)
dx

=
2

3

∫ 4

0

x2ex3

dx

=
2

9

(
e64 − 1

)
.
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