Midterm Exam I, Solutions

Calculus III, 110.202

11:00 am - 11:50 am October 12, 2004

1. (a) We have

$$
\begin{gathered}
\rho=\sqrt{(-2)^{2}+(-2)^{2}+1^{2}}=3 \\
\sin \theta=\frac{-2}{\sqrt{(-2)^{2}+(-2)^{2}}}=-\frac{\sqrt{2}}{2} \\
\cos \theta=\frac{-2}{\sqrt{(-2)^{2}+(-2)^{2}}}=-\frac{\sqrt{2}}{2} \\
\cos \phi=\frac{1}{\sqrt{(-2)^{2}+(-2)^{2}+1^{2}}}=\frac{1}{3}
\end{gathered}
$$

so we have

$$
\theta=\pi+\arcsin \frac{\sqrt{2}}{2}=\frac{5 \pi}{4} ; \quad \phi=\arccos \frac{1}{3}
$$

Hence the spherical coordinate for P_{1} is

$$
\left(3, \frac{5 \pi}{4}, \arccos \frac{1}{3}\right)
$$

(b) We have $\overrightarrow{P_{1} P_{2}}=(3,4,0)$ and $\overrightarrow{P_{3} P_{2}}=(2,2,-4)$, so

$$
\begin{gathered}
\overrightarrow{P_{1} P_{2}} \cdot \overrightarrow{P_{3} P_{2}}=3 \times 2+4 \times 2+0 \times(-4)=14 \\
\left\|\overrightarrow{P_{1} P_{2}}\right\|=\sqrt{3^{2}+4^{2}+0^{2}}=5 \\
\left\|\overrightarrow{P_{3} P_{2}}\right\|=\sqrt{2^{2}+2^{2}+(-4)^{2}}=\sqrt{24}=2 \sqrt{6}
\end{gathered}
$$

Hence their angle is

$$
\arccos \left(\frac{\overrightarrow{P_{1} P_{2}} \cdot \overrightarrow{P_{3} P_{2}}}{\left\|\overrightarrow{P_{1} P_{2}}\right\|\left\|\overrightarrow{P_{3} P_{2}}\right\|}\right)=\arccos \left(\frac{7}{5 \sqrt{6}}\right) .
$$

2. (a) (Implicit Differentiation) We may write the relation as

$$
F(x, y, z)=x^{3}+3 y^{2}+8 x z^{2}-3 z^{3} y-1=0
$$

so implicit differentiation gives

$$
\frac{\partial z}{\partial x}=-\frac{\partial F / \partial x}{\partial F / \partial z}=-\frac{3 x^{2}+8 z^{2}}{16 x z-9 z^{2} y}
$$

(Chain Rule) We may take the partial derivatives for both sides and apply the chain rule to get

$$
3 x^{2}+8 z^{2}+16 x z \frac{\partial z}{\partial x}-9 z^{2} y \frac{\partial z}{\partial x}=0
$$

so we have

$$
\frac{\partial z}{\partial x}=\frac{3 x^{2}+8 z^{2}}{9 z^{2} y-16 x z}
$$

(b) We have

$$
\begin{aligned}
\frac{\partial z}{\partial x} & =\frac{\partial z}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial z}{\partial v} \frac{\partial v}{\partial x} \\
& =3 x y\left(\ln (2 u+3 v)+\frac{2 u}{2 u+3 v}\right)+\frac{3 u}{2 u+3 v} \frac{e^{y}}{2 x+y}
\end{aligned}
$$

3. (a) We have

$$
f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0
$$

In our case,

$$
\begin{gathered}
f_{x}(x, y, z)=2 x z+y e^{z-1}, \\
f_{y}(x, y, z)=-2 y+x e^{z-1}, \\
f_{y}(3,2,1)=6+2=8 \\
f_{z}(x, y, z)=x^{2}+x y e^{z-1}, \\
f_{z}(3,2,1)=9+6=15
\end{gathered}
$$

Hence the equation for the tangent plane at $(3,2,1)$ is

$$
8(x-3)-(y-2)+15(z-1)=0
$$

i.e. $8 x-y+15 z=37$.
(b) We have

$$
(2,3,5) \times(1,1,2)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 3 & 5 \\
1 & 1 & 2
\end{array}\right|=(1,1,-1)
$$

so the unit vector along this direction is

$$
\mathbf{u}=\frac{(1,1,-1)}{\sqrt{1^{2}+1^{2}+(-1)^{2}}}=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right) .
$$

On the other hand, from above we have $\nabla f(3,2,1)=(8,-1,15)$. Hence

$$
D_{\mathbf{u}} f(3,2,1)=(8,-1,15) \cdot\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)=-\frac{8}{\sqrt{3}} .
$$

4. (a) To begin with, we have

$$
\nabla f(x, y)=\left(10 y-6 x y-5 y^{2}, 10 x-3 x^{2}-10 x y\right)
$$

so $\nabla f(0,0)=\mathbf{0}$ and $(0,0)$ is a critical point. Now the Hessian matrix is

$$
\begin{gathered}
H(f)=\left(\begin{array}{cc}
-6 y & 10-6 x-10 y \\
10-6 x-10 y & -10 x
\end{array}\right), \\
D=\operatorname{det}(H(f))(0,0)=-100<0
\end{gathered}
$$

so $(0,0)$ is neither local maximum nor local maximum.
(b) Since

$$
\nabla f(x, y)=(2 x-3 y+5,-3 x-2+12 y)
$$

we have $\nabla f(0,0) \neq \mathbf{0}$ and so $(0,0)$ is an ordinary point, neither a local maximum nor a local minimum.
5. (a) We have

$$
\nabla f(x, y)=\left(2 x-2 x y, 4 y-x^{2}\right)
$$

so the fastest decreasing direction is along the direction of

$$
-\nabla f(1,3)=-(-4,11)=(4,-11)
$$

so the direction vector is

$$
\frac{(4,-11)}{\sqrt{(-4)^{2}+11^{2}}}=\left(\frac{4}{\sqrt{137}},-\frac{11}{\sqrt{137}}\right) .
$$

(b) To locate the critical points, we set

$$
\nabla f(x, y)=\left(2 x-2 x y, 4 y-x^{2}\right)=(0,0)
$$

so

$$
2 x-2 x y=2 x(1-y)=0, \quad 4 y-x^{2}=0
$$

From the first equation, we have either $x=0$ or $y=1$. Now we substitute this into the second equation, then we get $y=1$ or $x^{2}=$ 4 correspondingly. Hence the critical points are $(0,0),(2,1),(-2,1)$. Furthermore, we have

$$
D(x, y)=\operatorname{det}(H(f)(x, y))=\left|\begin{array}{cc}
2-2 y & -2 x \\
-2 x & 4
\end{array}\right|=8(1-y)-4 x^{2}
$$

Since $D(0,0)=8>0$ and $f_{x x}(0,0)=2>0,(0,0)$ is a local maximum; since $D(2,1)=-16<0,(2,1)$ is a saddle point; since $D(-2,1)=-16<0,(-2,1)$ is a saddle point.

