MATH 202-MIDTERM 1 SOLUTIONS

Problem 1

a. S is the level set $F=0$, where $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is given by $F(x, y, z)=x^{3}-y z-y$. Gradient: $\nabla F(x, y, z)=\left(3 x^{2},-z-1,-y\right)$. In particular $\nabla F(P)=\nabla F(2,1,7)=$ $(12,-8,-1)$. The tangent plane $T_{P}(S)$ passes through $P(2,1,7)$ and has the normal vector $\nabla F(P)=12 i-8 j-k$, hence its equation is

$$
12(X-2)-8(Y-1)-(Z-7)=0, \quad 12 X-8 Y-Z-9-0
$$

b. Note that the vector $N=9 i-j-3 k$ is normal to the plane α. Let $m=(x, y, z)$ a point on S such that $T_{m}(S)$ is parallel to the plane α. We have two conditions on m :

$$
\left\{\begin{array}{l}
F(x, y, z)=0 \quad[m \in S] \\
\nabla F(x, y, z)=\lambda N \quad\left[T_{m}(S) \| \alpha\right]
\end{array}\right.
$$

Explicitly, this means

$$
\left\{\begin{array} { l }
{ 3 x ^ { 2 } = 9 \lambda } \\
{ - z - 1 = - \lambda } \\
{ - y = - 3 \lambda } \\
{ x ^ { 3 } - y z - y = 0 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x=\sqrt{3 \lambda} \\
y=3 \lambda \\
z=\lambda-1 \\
3 \sqrt{3} \lambda^{3 / 2}-3 \lambda(\lambda-1)-3 \lambda=0
\end{array}\right.\right.
$$

The last equation simplifies to $3 \sqrt{3} \lambda^{3 / 2}=3 \lambda^{2}=0$, i.e. $\lambda \in\{0,3\}$. The corresponding points on the surface are $(3,9,2)$ and $(0,0,0)$. [However $\nabla F(0,0,0)=0$ so the tangent plane at $(0,0,0)$ is not well-defined, so we're left with $(3,9,2)$.]

Problem 2

a. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f(\mathbf{x})=\operatorname{dist}^{2}(\mathbf{x}, \alpha)$. Explicitly f is given by $f(x, y, z)=$ $\frac{(x+2 y+z-1)^{2}}{6}$. Gradient: $\nabla f(x, y, z)=\frac{x+2 y+z-1}{3}(i+2 j+k)$.
$\phi(t) \stackrel{6}{=} f(\gamma(t))$, hence by the chain rule:

$$
\phi^{\prime}(t)=\nabla f(\gamma(t)) \cdot \gamma^{\prime}(t)=\frac{t^{2}+4 t+2}{3}(1,2,1) \cdot(2,1,2 t)=\frac{1}{3}\left(t^{2}+4 t+2\right)(2 t+4)
$$

b. The distance $d(\gamma(t), \alpha)$ is minimal iff $\phi(t)$ is minimal. To minimize the (onevariable) function $\phi(t)$ one has to look for critical points:

$$
\phi^{\prime}(t)=0 \Rightarrow t \in\{-2,-2 \pm \sqrt{2}\}
$$

If we compare the value of ϕ at these points we have

$$
\phi(-2 \pm \sqrt{2})=0, \quad \phi(-2)=\operatorname{dist}^{2}((-5,0,4), \alpha) \frac{2}{3}
$$

Therefore $\phi(t)$ is at a minimum for $t=-2 \pm \sqrt{2}$, which is actually when the path $\gamma(t)$ intersects the plane α.

Date: March 9, 2005.

Problem 3

a.

$$
\begin{aligned}
& N=\overrightarrow{B A} \times \overrightarrow{C A}=(2 j+k) \times(i+k) \\
& =\left|\begin{array}{ccc}
i & j & k \\
0 & 2 & 1 \\
1 & 0 & 1
\end{array}\right|=2 i+j-2 k
\end{aligned}
$$

b. $P(x, y, z)$ is characterized by the following two properties:

$$
\left\{\begin{array} { l }
{ \vec { O P } \| N } \\
{ \vec { B P } \perp N }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\overrightarrow{O P}=\lambda N \\
\overrightarrow{B P} \cdot N=0
\end{array}\right.\right.
$$

Explicitly

$$
\left\{\begin{array}{l}
x=2 \lambda \\
y=\lambda \\
z=-2 \lambda \\
2(x-1)+y-2 z=0
\end{array}\right.
$$

Substitute for x, y, z in the last equation: $2(2 \lambda-1)+\lambda+4 \lambda=0$, yields $\lambda=\frac{2}{9}$ and $P=\left(\frac{4}{9}, \frac{2}{9},-\frac{4}{9}\right)$.

Problem 4

a. $\frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=\lim _{t \rightarrow 0} 0=0$. Same way $\frac{\partial f}{\partial y}(0,0)=0$. In particular $\nabla f(0,0)=0$.
b. $\partial_{\vec{v}} f(0,0)=\lim _{t \rightarrow 0} \frac{f(t \vec{v})-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{f(t \vec{v})}{t}$. But
$f(t \vec{v})=f(t \cos \theta, t \sin \theta)=\frac{t^{3}\left(\cos ^{2} \theta \sin \theta+\cos \theta \sin ^{2} \theta\right)}{t^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)}=t \sin \theta \cos \theta(\sin \theta+\cos \theta)$
therefore

$$
\partial_{\vec{v}} f(0,0)=\sin \theta \cos \theta(\sin \theta+\cos \theta)=\frac{\sqrt{2}}{2} \sin (2 \theta) \sin \left(\theta+\frac{\pi}{4}\right)
$$

c. f is not differentiable at $(0,0)$ since clearly $\partial_{\vec{v}} f(0,0) \neq \nabla f(0,0) \cdot \vec{v}$.
d. The (unit) direction of greatest increase is the one for which the directional derivative $\partial_{\vec{v}} f(0,0)$ is the greatest, that is we need to find θ which maximizes the expression

$$
\frac{\sqrt{2}}{2} \sin (2 \theta) \sin \left(\theta+\frac{\pi}{4}\right)
$$

But this is certainly $\leq \frac{\sqrt{2}}{2}$ and it is attained at $\theta=\frac{\pi}{4}$, therefore

$$
\vec{v}=\cos \left(\frac{\pi}{4}\right) i+\sin \left(\frac{\pi}{4}\right) j=\frac{\sqrt{2}}{2}(i+j)
$$

