MATH 202 - MIDTERM I

Department of Mathematics
 Johns Hopkins University

March 9, 2005

NAME: \qquad SIGNATURE: \qquad

SECTION NUMBER: \qquad

TA (circle): EK Lee, Tom Wright

1. This exam has 6 pages including this cover.
2. No books, notes or calculators are allowed.
3. The correct answer is worth zero points. For full credit we must be able to see how you got your answer.

PROBLEM	POINTS	SCORE
1	25	
2	25	
3	25	
4	25	
TOTAL	100	

1. a. [10 pts] Find the tangent plane to the surface

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid y=x^{3}-y z\right\}
$$

at the point $P(2,1,7)$.
b.[15 pts] Find the points on S where the tangent plane is parallel to the plane

$$
9 x-y-3 z=4
$$

2. Consider the path in \mathbb{R}^{3} given by

$$
\gamma(t)=\left(2 t-1, t+2, t^{2}\right), \quad t \in \mathbb{R}
$$

and let α the plane given by the equation

$$
\alpha: \quad x+2 y+z=1
$$

a. [15 pts] Let $\phi(t)=\operatorname{dist}^{2}(\gamma(t), \alpha)$ i.e. the square distance from $\gamma(t)$ to the plane α. Compute $\phi^{\prime}(t)$ using the chain rule.
b. [10 pts] Determine t_{0} for which $\gamma(t)$ is closest to α.
3. The three points $A(1,2,1), B(1,0,0)$ and $C(0,2,0)$ determine a plane $A B C$ in \mathbb{R}^{3}.
a. [10 pts] Find a normal vector \vec{N} to the plane $A B C$.
b. $[15 \mathrm{pts}]$ Let P the projection of the origin O onto the plane $A B C$. (i.e. P is the point in the plane $A B C$ such that $O P$ is perpendicular on the plane $A B C)$. Determine the coordinates of P.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ the map given by

$$
f(x, y)= \begin{cases}\frac{x^{2} y+x y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

a. [5pts] Compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.
b. [5pts] Compute the directional derivative $\partial_{\vec{v}} f(0,0)$ along any unit vector

$$
\vec{v}=\cos (\theta) \vec{i}+\sin (\theta) \vec{j}
$$

c. [5pts] Prove that f is not differentiable at $(0,0)$.
d. [10pts] Determine the direction of greatest increase at (0,0). Express the answer as a unit vector.

Helpful things:
I. The distance from a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ to the plane α given by the equation $A X+$ $B Y+C Z+D=0$ is $\operatorname{dist}(P, \alpha)=\frac{\left|A x_{0}+B y_{0}+C z_{0}+D\right|}{\sqrt{A^{2}+B^{2}+C^{2}}}$.
II. Some trigonometric identities:

$$
\begin{aligned}
& \sin \theta \cos \theta=\frac{1}{2} \sin (2 \theta) \\
& \sin (\theta)+\cos (\theta)=\sqrt{2} \sin \left(\theta+\frac{\pi}{4}\right)
\end{aligned}
$$

III. Picture for Problem 3:

