MATH 202 — MIDTERM I

DEPARTMENT OF MATHEMATICS Johns Hopkins University

March 9, 2005

NAME: _____

SIGNATURE: _____

SECTION NUMBER:_____

TA (circle): EK Lee, Tom Wright

1. This exam has 6 pages including this cover.

2. No books, notes or calculators are allowed.

3. The correct answer is worth **zero** points. For full credit we must be able to see how you got your answer.

PROBLEM	POINTS	SCORE
1	25	
2	25	
3	25	
4	25	
TOTAL	100	

1. a.[10 pts] Find the tangent plane to the surface

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid y = x^3 - yz\}$$

at the point P(2, 1, 7).

b.[15 pts] Find the points on S where the tangent plane is parallel to the plane

$$9x - y - 3z = 4$$

2. Consider the path in \mathbb{R}^3 given by

$$\gamma(t) = (2t - 1, t + 2, t^2), \quad t \in \mathbb{R}$$

and let α the plane given by the equation

$$\alpha: \quad x + 2y + z = 1$$

a. [15 pts] Let $\phi(t) = \text{dist}^2(\gamma(t), \alpha)$ i.e. the square distance from $\gamma(t)$ to the plane α . Compute $\phi'(t)$ using the chain rule.

b. [10 pts] Determine t_0 for which $\gamma(t)$ is closest to α .

- **3.** The three points A(1,2,1), B(1,0,0) and C(0,2,0) determine a plane ABC in \mathbb{R}^3 .
- **a.** [10 pts] Find a normal vector \overrightarrow{N} to the plane ABC.

b. [15 pts] Let P the projection of the origin O onto the plane ABC. (i.e. P is the point in the plane ABC such that OP is perpendicular on the plane ABC). Determine the coordinates of P.

4. Let $f : \mathbb{R}^2 \to \mathbb{R}$ the map given by

$$f(x,y) = \begin{cases} \frac{x^2y + xy^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

a. [5pts] Compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.

b. [5pts] Compute the directional derivative $\partial_{\overrightarrow{v}} f(0,0)$ along any unit vector

$$\overrightarrow{v} = \cos(\theta) \overrightarrow{i} + \sin(\theta) \overrightarrow{j}$$

c. [5pts] Prove that f is not differentiable at (0,0).

d. [10pts] Determine the direction of greatest increase at (0,0). Express the answer as a unit vector.

Helpful things:

I. The distance from a point $P = (x_0, y_0, z_0)$ to the plane α given by the equation AX + BY + CZ + D = 0 is $\operatorname{dist}(P, \alpha) = \frac{|Ax_0 + By_0 + Cz_0 + D|}{\sqrt{A^2 + B^2 + C^2}}$. **II.** Some trigonometric identities:

$$\sin\theta\cos\theta = \frac{1}{2}\sin(2\theta)$$
$$\sin(\theta) + \cos(\theta) = \sqrt{2}\sin(\theta + \frac{\pi}{4})$$

III. Picture for Problem 3: