MIDTER 2, APRIL 6, 2005: SOLUTIONS
 MATH 202

1. Problem 1

To find critical points, solve

$$
\left\{\begin{array} { l }
{ f _ { x } = 3 x ^ { 2 } - 8 x - y = 0 } \\
{ f _ { y } = - x - 2 y = 0 }
\end{array} \Leftrightarrow \left\{\begin{array} { l }
{ 3 x ^ { 2 } - 8 x - y = 0 } \\
{ y = - x / 2 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
3 x^{2}-8 x+\frac{x}{2}=0 \\
y=-x / 2
\end{array}\right.\right.\right.
$$

so $6 x^{2}-15 x=3 x(2 x-5)=0$, which implies that either $x=0$ (hence $y=0$), or $x=5 / 2$ (hence $y=-5$).
Thus we get two critical points: $(0,0)$ and $(5 / 2,-5)$.
For the second derivative test, we need

$$
\begin{aligned}
& f_{x x}=6 x-8 \\
& f_{x, y}=-1 \\
& f_{y y}=-2
\end{aligned}
$$

At $(0,0)$ we have

$$
H_{f}(0,0)=\left(\begin{array}{ll}
-8 & -1 \\
-1 & -2
\end{array}\right)
$$

which has determinant $=15$ and since $-8<0$ this is a local maximum.
At $(5 / 2,-5)$

$$
H_{f}(5 / 2,-5)=\left(\begin{array}{cc}
7 & -1 \\
-1 & -2
\end{array}\right)
$$

and this has determinant -15 , indicating a saddle point.

2. Problem 2

Here $h(x, y)=x^{3}-y^{2}+1$ and the constraint is $g(x, y)=x^{2}+y^{2}-1 \leq 0$.
Critical points in the interior: $h_{x}=3 x^{2}=0, h_{y}=-2 y=0$; hence get $(0,0)$.
Critical points on the boundary: Lagrange multiplier problem

$$
\left\{\begin{array}{l}
h_{x}=3 x^{2}=2 \lambda x \\
h_{y}=-2 y=2 \lambda y \\
x^{2}+y^{2}-1=0
\end{array}\right.
$$

If $x=0$, then $y= \pm 1$. If $y=0$, then $x= \pm 1$. Otherwise, $x=\frac{2 \lambda}{3}$ and $\lambda=-1$, so $x=-\frac{2}{3}, y= \pm \frac{\sqrt{5}}{3}$. So we need to compare the values

(x, y)	$(0,0)$	$(1,0)$	$(-1,0)$	$(0,1)$	$(0,-1)$	$\left(-\frac{2}{3}, \frac{\sqrt{5}}{3}\right)$	$\left(-\frac{2}{3},-\frac{\sqrt{5}}{3}\right)$
$f(x, y)$	1	2	0	0	0	$\frac{4}{27}$	$\frac{4}{27}$

- $\max f=2$ is realized at $(1,0)$.
- $\min f=0$ is realized at three points.

3. Problem 3

Integrating on horizontal slices:

$$
\begin{aligned}
\iint_{D} x \sin \left(y^{3}\right) d x d y & =\int_{0}^{1}\left\{\int_{0}^{2 y} x \sin \left(y^{3}\right) d x\right\} d y \\
& =\int_{0}^{1} 2 y^{2} \sin \left(y^{3}\right) d y=-\left.\frac{2}{3} \cos \left(y^{3}\right)\right|_{y=0} ^{y=1} \\
& =\frac{2(1-\cos (1))}{3}
\end{aligned}
$$

4. Problem 4
a. V is the domain under the graph of $z=1+x^{2}+y^{2}$ over the disk $D=$ $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$. Therefore:

$$
\operatorname{vol}(V)=\iint_{D}\left(1+x^{2}+y^{2}\right) d x d y
$$

b. Using polar coordinates $[r, \theta]$ on the disk, $0 \leq \theta \leq 2 \pi$ and $0 \leq r \leq 1$ and the area element is $d x d y=r d r d \theta$. The integral equals

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{1}\left(1+r^{2}\right) r d r d \theta & =\left(\int_{0}^{1}\left(1+r^{2}\right) r d r\right)\left(\int_{0}^{2 \pi} d \theta\right)=2 \pi \int_{0}^{1}\left(r+r^{3}\right) d r \\
& =2 \pi\left(\frac{1}{2}+\frac{1}{4}\right)=\frac{3 \pi}{2}
\end{aligned}
$$

