DIFFERENTIABILITY IN SEVERAL VARIABLES: SUMMARY OF BASIC CONCEPTS

1. Partial derivatives If $f : \mathbb{R}^3 \to \mathbb{R}$ is an arbitrary function and $a = (x_0, y_0, z_0) \in \mathbb{R}^3$, then

(1)
$$\frac{\partial f}{\partial y}(a) := \lim_{t \to 0} \frac{f(a+t\mathbf{j}) - f(a)}{t} = \lim_{t \to 0} \frac{f(x_0, y_0 + t, z_0) - f(x_0, y_0, z_0)}{t}$$

etc.. provided the limit exists. Example 1. for $f : \mathbb{R}^2 \to \mathbb{R}$, $\frac{\partial f}{\partial x}(0,0) = \lim_{t\to 0} \frac{f(t,0) - f(0,0)}{t}$. Example 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

Then:

• $\frac{\partial f}{\partial x}(0,0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = \lim_{t \to 0} \frac{0}{t} = 0$ • $\frac{\partial f}{\partial y}(0,0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 0$

Note: away from (0,0), where f is the quotient of differentiable functions (with non-zero denominator) one can apply the usual rules of derivation:

$$\frac{\partial f}{\partial x}(x,y) = \frac{2xy(x^2 + y^2) - 2x^3y}{(x^2 + y^2)^2}, \quad \text{for } (x,y) \neq (0,0)$$

2. Directional derivatives. If $f : \mathbb{R}^2 \to \mathbb{R}$ is a map, $a = (x_0, y_0) \in \mathbb{R}^2$ and $v = \alpha \mathbf{i} + \beta \mathbf{j}$ is a vector in \mathbb{R}^2 , then by definition

(2)
$$\partial_v f(a) := \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} = \lim_{t \to 0} \frac{f(x_0 + t\alpha, y_0 + t\beta) - f(x_0, y_0)}{t}$$

Example 3. Let f the function from the Example 2 above. Then for $v = \alpha \mathbf{i} + \beta \mathbf{j}$ a unit vector (i.e. $\alpha^2 + \beta^2 = 1$), we have

$$\partial_v f(0,0) = \lim_{t \to 0} \frac{f(tv) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(t\alpha, t\beta)}{t} = \alpha^2 \beta$$

3. Definition. A map $f : \mathbb{R}^2 \to \mathbb{R}$ is *differentiable* at $a \in \mathbb{R}^2$ if and only if the following two conditions are satisfied:

∂f/∂x(a) and ∂f/∂y(a) exist; in other words, ∇f(a) exists.
lim_{x→a} f(x) - f(a) - ∇f(a) ⋅ (x - a) = 0 ||x - a||

Example 4. Assume $f : \mathbb{R}^2 \to \mathbb{R}$ is a map such that $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Then f is differentiable at (0,0) iff $\lim_{(x,y)\to(0,0)} \frac{f(x,y) - f(0,0)}{\sqrt{x^2 + y^2}} = 0.$

4. Theorem A. If $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable at a and v is a vector in \mathbb{R}^2 , then:

(3)
$$\partial_v f(a) = \nabla f(a) \cdot v$$
 [dot product]

Example 5. Let $f : \mathbb{R}^2 \to \mathbb{R}$ the function from Example 2 again. We saw that $\nabla f(0,0) = 0$, while $\partial_v f(0,0) = \alpha^2 \beta$ for a unit vector $v = \alpha \mathbf{i} + \beta \mathbf{j}$. Hence clearly $\partial_v f(0,0) \neq \nabla f(0,0) \cdot v$, at least say, for $v = \frac{\mathbf{i} + \mathbf{j}}{\sqrt{2}}$. In view of Theorem A, we conclude that f is not differentiable at (0,0).

One can also rely on the definition of differentiability: suppose f is differentiable and see if we can obtain a contradiction. If this was the case, we would have $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{\sqrt{x^2+y^2}} = 0$, which is not true as we could check for $x = y = t, t \to 0$.

5. Theorem B. Let $f : \mathbb{R}^2 \to \mathbb{R}$ a map and $a \in \mathbb{R}^2$. If:

- f has partial derivatives (in a neighborhood of a) AND
- the partial derivatives f_x, f_y are continuous at a,

then f is differentiable.

In other words :

(4)

 $\mathbf{C^1} \Rightarrow \text{Differentiable}$

yet the converse is **not** true.

Example 6. The function f from Example 2 satisfies

$$\frac{\partial f}{\partial x}(x,y) = \begin{cases} \frac{2xy^3}{(x^2+y^2)^2}, & (x,y) \neq (0,0)\\ 0, & (x,y) = (0,0) \end{cases}$$

One can check that $\frac{\partial f}{\partial x}$ is **not** continuous at (0,0) (by taking $x = y = t \to 0$), but this is not the reason why f is **not** differentiable at (0,0), but rather a consequence of it. To illustrate this last point, consider

Example 7. Let $h : \mathbb{R} \to \mathbb{R}$ defined by

$$h(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0\\ 0, & x = 0 \end{cases}$$

Then h is differentiable everywhere, including at x = 0 where we have

$$h'(0) = \lim_{t \to 0} \frac{h(t) - h(0)}{t} = \lim_{t \to 0} t \sin(1/t) = 0$$

yet h' is not continuous at 0, since

$$h'(x) = \begin{cases} 2x\sin(1/x) - \sin(1/x), & x \neq 0\\ 0, & x = 0 \end{cases}$$

In other words, h is differentiable without being \mathbf{C}^1 .

6. Chain rule. If $f : \mathbb{R}^m \to \mathbb{R}^n$ and $g : \mathbb{R}^n \to \mathbb{R}^k$ are differentiable then $h = g \circ f$ is differentiable and for $a \in \mathbb{R}^m$ we have and h'(a) = g'(b)f'(a), in other words

$$D_h(a) = D_q(b)D_f(a)$$

where $b = f(a) \in \mathbb{R}^n$, $D_h(a)$ is the matrix of partial derivatives of h at a, etc...

Important application. If $\gamma(t) : \mathbb{R} \to \mathbb{R}^3$ is a differentiable map (path) and $f(x, y, z) : \mathbb{R}^3 \to \mathbb{R}$ is differentiable as well, then $\phi = f \circ \gamma$ is differentiable as a function $\varphi : \mathbb{R} \to \mathbb{R}$, and its derivative is given by $\varphi'(t) = \nabla f(\gamma(t)) \cdot \gamma'(t)$.

7. Geometric meaning of gradient. If $F : \mathbb{R}^3 \to \mathbb{R}$ is a differentiable function and S is the level set $S = \{F = c\} = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = c\}$, then for a point $a \in S$, then

(5)
$$\nabla F(a) \perp T_a(S)$$

Example 8. Consider a differentiable function $h : \mathbb{R}^2 \to \mathbb{R}$. Then graph(h) (the graph of h) seen as a surface in \mathbb{R}^3 is simply the level set $\{F = 0\}$ of the function of 3 variables F(x, y, z) = f(x, y) - z. Then, for $a = (x_0, y_0) \in \mathbb{R}^2$ and $m = (x_0, y_0, z_0)$ the corresponding point on the graph $(z_0 = h(x_0, y_0))$, the vector

$$\nabla F(x_0, y_0, z_0) = \frac{\partial h}{\partial x}(x_0, y_0)\mathbf{i} + \frac{\partial h}{\partial y}(x_0, y_0)\mathbf{j} - \mathbf{k}$$

is normal to $T_m(\operatorname{graph}(h))$. This allows us to find the equation of the tangent plane to the graph.