
DIFFERENTIABILITY IN SEVERAL VARIABLES: SUMMARY OF BASIC
CONCEPTS

1. Partial derivatives If f : R3 → R is an arbitrary function and a = (x0, y0, z0) ∈ R3, then

(1)
∂f

∂y
(a) := lim

t→0

f(a + tj)− f(a)
t

= lim
t→0

f(x0, y0 + t, z0)− f(x0, y0, z0)
t

etc.. provided the limit exists.
Example 1. for f : R2 → R, ∂f

∂x (0, 0) = limt→0
f(t,0)−f(0,0)

t .

Example 2. Let f : R2 → R given by

f(x, y) =

{
x2y

x2+y2 , (x, y) 6= (0, 0)
0, (x, y) = (0, 0)

Then:
• ∂f

∂x (0, 0) = limt→0
f(t,0)−f(0,0)

t = limt→0
0
t = 0

• ∂f
∂y (0, 0) = limt→0

f(0,t)−f(0,0)
t = 0

Note: away from (0, 0), where f is the quotient of differentiable functions (with non-zero denominator)
one can apply the usual rules of derivation:

∂f

∂x
(x, y) =

2xy(x2 + y2)− 2x3y

(x2 + y2)2
, for (x, y) 6= (0, 0)

2. Directional derivatives. If f : R2 → R is a map, a = (x0, y0) ∈ R2 and v = αi + βj is a vector in
R2, then by definition

(2) ∂vf(a) := lim
t→0

f(a + tv)− f(a)
t

= lim
t→0

f(x0 + tα, y0 + tβ)− f(x0, y0)
t

Example 3. Let f the function from the Example 2 above. Then for v = αi + βj a unit vector (i.e.
α2 + β2 = 1), we have

∂vf(0, 0) = lim
t→0

f(tv)− f(0, 0)
t

= lim
t→0

f(tα, tβ)
t

= α2β

3. Definition. A map f : R2 → R is differentiable at a ∈ R2 if and only if the following two conditions
are satisfied:

• ∂f
∂x (a) and ∂f

∂y (a) exist; in other words, ∇f(a) exists.

• lim
x→a

f(x)− f(a)−∇f(a) · (x− a)
‖x− a‖ = 0

Example 4. Assume f : R2 → R is a map such that ∂f
∂x (0, 0) = ∂f

∂y (0, 0) = 0. Then f is differentiable at

(0, 0) iff lim
(x,y)→(0,0)

f(x, y)− f(0, 0)√
x2 + y2

= 0.

4. Theorem A. If f : R2 → R is differentiable at a and v is a vector in R2, then:

(3) ∂vf(a) = ∇f(a) · v [dot product]

Example 5. Let f : R2 → R the function from Example 2 again. We saw that ∇f(0, 0) = 0, while
∂vf(0, 0) = α2β for a unit vector v = αi + βj. Hence clearly ∂vf(0, 0) 6= ∇f(0, 0) · v, at least say, for
v = i+j√

2
. In view of Theorem A, we conclude that f is not differentiable at (0, 0).

One can also rely on the definition of differentiability: suppose f is differentiable and see if we can
obtain a contradiction. If this was the case, we would have lim(x,y)→(0,0)

f(x,y)√
x2+y2

= 0, which is not true

as we could check for x = y = t, t → 0.

5. Theorem B. Let f : R2 → R a map and a ∈ R2.
If:

• f has partial derivatives (in a neighborhood of a) AND
• the partial derivatives fx, fy are continuous at a,
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then f is differentiable.

In other words :

(4) C1 ⇒ Differentiable

yet the converse is not true.

Example 6. The function f from Example 2 satisfies

∂f

∂x
(x, y) =

{
2xy3

(x2+y2)2 , (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

One can check that ∂f
∂x is not continuous at (0, 0) (by taking x = y = t → 0), but this is not the reason

why f is not differentiable at (0, 0), but rather a consequence of it. To illustrate this last point, consider

Example 7. Let h : R→ R defined by

h(x) =

{
x2 sin(1/x), x 6= 0
0, x = 0

Then h is differentiable everywhere, including at x = 0 where we have

h′(0) = lim
t→0

h(t)− h(0)
t

= lim
t→0

t sin(1/t) = 0

yet h′ is not continuous at 0, since

h′(x) =

{
2x sin(1/x)− sin(1/x), x 6= 0
0, x = 0

In other words, h is differentiable without being C1.

6. Chain rule. If f : Rm → Rn and g : Rn → Rk are differentiable then h = g ◦ f is differentiable and
for a ∈ Rm we have and h′(a) = g′(b)f ′(a), in other words

Dh(a) = Dg(b)Df (a)

where b = f(a) ∈ Rn, Dh(a) is the matrix of partial derivatives of h at a, etc...

Important application. If γ(t) : R → R3 is a differentiable map (path) and f(x, y, z) : R3 → R is
differentiable as well, then φ = f ◦ γ is differentiable as a function ϕ : R→ R, and its derivative is given
by ϕ′(t) = ∇f(γ(t)) · γ′(t).
7. Geometric meaning of gradient. If F : R3 → R is a differentiable function and S is the level set
S = {F = c} = {(x, y, z) ∈ R3 | f(x, y, z) = c}, then for a point a ∈ S, then

(5) ∇F (a) ⊥ Ta(S)

Example 8. Consider a differentiable function h : R2 → R. Then graph(h) (the graph of h) seen as a
surface in R3 is simply the level set {F = 0} of the function of 3 variables F (x, y, z) = f(x, y)− z. Then,
for a = (x0, y0) ∈ R2 and m = (x0, y0, z0) the corresponding point on the graph (z0 = h(x0, y0)), the
vector

∇F (x0, y0, z0) =
∂h

∂x
(x0, y0)i +

∂h

∂y
(x0, y0)j− k

is normal to Tm(graph(h)). This allows us to find the equation of the tangent plane to the graph.


