DIFFERENTIABILITY IN SEVERAL VARIABLES: SUMMARY OF BASIC CONCEPTS

1. Partial derivatives If $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is an arbitrary function and $a=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$, then

$$
\begin{equation*}
\frac{\partial f}{\partial y}(a):=\lim _{t \rightarrow 0} \frac{f(a+t \mathbf{j})-f(a)}{t}=\lim _{t \rightarrow 0} \frac{f\left(x_{0}, y_{0}+t, z_{0}\right)-f\left(x_{0}, y_{0}, z_{0}\right)}{t} \tag{1}
\end{equation*}
$$

etc.. provided the limit exists.
Example 1. for $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}$.
Example 2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Then:

- $\frac{\partial f}{\partial x}(0,0)=\lim _{t \rightarrow 0} \frac{f(t, 0)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{0}{t}=0$
- $\frac{\partial f}{\partial y}(0,0)=\lim _{t \rightarrow 0} \frac{f(0, t)-f(0,0)}{t}=0$

Note: away from $(0,0)$, where f is the quotient of differentiable functions (with non-zero denominator) one can apply the usual rules of derivation:

$$
\frac{\partial f}{\partial x}(x, y)=\frac{2 x y\left(x^{2}+y^{2}\right)-2 x^{3} y}{\left(x^{2}+y^{2}\right)^{2}}, \quad \text { for }(x, y) \neq(0,0)
$$

2. Directional derivatives. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a map, $a=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and $v=\alpha \mathbf{i}+\beta \mathbf{j}$ is a vector in \mathbb{R}^{2}, then by definition

$$
\begin{equation*}
\partial_{v} f(a):=\lim _{t \rightarrow 0} \frac{f(a+t v)-f(a)}{t}=\lim _{t \rightarrow 0} \frac{f\left(x_{0}+t \alpha, y_{0}+t \beta\right)-f\left(x_{0}, y_{0}\right)}{t} \tag{2}
\end{equation*}
$$

Example 3. Let f the function from the Example 2 above. Then for $v=\alpha \mathbf{i}+\beta \mathbf{j}$ a unit vector (i.e. $\alpha^{2}+\beta^{2}=1$), we have

$$
\partial_{v} f(0,0)=\lim _{t \rightarrow 0} \frac{f(t v)-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{f(t \alpha, t \beta)}{t}=\alpha^{2} \beta
$$

3. Definition. A map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at $a \in \mathbb{R}^{2}$ if and only if the following two conditions are satisfied:

- $\frac{\partial f}{\partial x}(a)$ and $\frac{\partial f}{\partial y}(a)$ exist; in other words, $\nabla f(a)$ exists.
- $\lim _{\mathbf{x} \rightarrow a} \frac{f(\mathbf{x})-f(a)-\nabla f(a) \cdot(\mathbf{x}-a)}{\|\mathbf{x}-a\|}=0$

Example 4. Assume $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a map such that $\frac{\partial f}{\partial x}(0,0)=\frac{\partial f}{\partial y}(0,0)=0$. Then f is differentiable at $(0,0)$ iff $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)}{\sqrt{x^{2}+y^{2}}}=0$.
4. Theorem A. If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable at a and v is a vector in \mathbb{R}^{2}, then:

$$
\begin{equation*}
\partial_{v} f(a)=\nabla f(a) \cdot v \quad[\text { dot product }] \tag{3}
\end{equation*}
$$

Example 5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ the function from Example 2 again. We saw that $\nabla f(0,0)=0$, while $\partial_{v} f(0,0)=\alpha^{2} \beta$ for a unit vector $v=\alpha \mathbf{i}+\beta \mathbf{j}$. Hence clearly $\partial_{v} f(0,0) \neq \nabla f(0,0) \cdot v$, at least say, for $v=\frac{\mathbf{i}+\mathbf{j}}{\sqrt{2}}$. In view of Theorem A, we conclude that f is not differentiable at $(0,0)$.

One can also rely on the definition of differentiability: suppose f is differentiable and see if we can obtain a contradiction. If this was the case, we would have $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)}{\sqrt{x^{2}+y^{2}}}=0$, which is not true as we could check for $x=y=t, t \rightarrow 0$.
5. Theorem B. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a map and $a \in \mathbb{R}^{2}$.

If:

- f has partial derivatives (in a neighborhood of a) AND
- the partial derivatives f_{x}, f_{y} are continuous at a,
then f is differentiable.
In other words :

$$
\begin{equation*}
\mathbf{C}^{\mathbf{1}} \Rightarrow \text { Differentiable } \tag{4}
\end{equation*}
$$

yet the converse is not true.
Example 6. The function f from Example 2 satisfies

$$
\frac{\partial f}{\partial x}(x, y)= \begin{cases}\frac{2 x y^{3}}{\left(x^{2}+y^{2}\right)^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

One can check that $\frac{\partial f}{\partial x}$ is not continuous at $(0,0)$ (by taking $x=y=t \rightarrow 0$), but this is not the reason why f is not differentiable at $(0,0)$, but rather a consequence of it. To illustrate this last point, consider

Example 7. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
h(x)= \begin{cases}x^{2} \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Then h is differentiable everywhere, including at $x=0$ where we have

$$
h^{\prime}(0)=\lim _{t \rightarrow 0} \frac{h(t)-h(0)}{t}=\lim _{t \rightarrow 0} t \sin (1 / t)=0
$$

yet h^{\prime} is not continuous at 0 , since

$$
h^{\prime}(x)= \begin{cases}2 x \sin (1 / x)-\sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

In other words, h is differentiable without being $\mathbf{C}^{\mathbf{1}}$.
6. Chain rule. If $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ and $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ are differentiable then $h=g \circ f$ is differentiable and for $a \in \mathbb{R}^{m}$ we have and $h^{\prime}(a)=g^{\prime}(b) f^{\prime}(a)$, in other words

$$
D_{h}(a)=D_{g}(b) D_{f}(a)
$$

where $b=f(a) \in \mathbb{R}^{n}, D_{h}(a)$ is the matrix of partial derivatives of h at a, etc...
Important application. If $\gamma(t): \mathbb{R} \rightarrow \mathbb{R}^{3}$ is a differentiable map (path) and $f(x, y, z): \mathbb{R}^{3} \rightarrow \mathbb{R}$ is differentiable as well, then $\phi=f \circ \gamma$ is differentiable as a function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$, and its derivative is given by $\varphi^{\prime}(t)=\nabla f(\gamma(t)) \cdot \gamma^{\prime}(t)$.
7. Geometric meaning of gradient. If $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a differentiable function and S is the level set $S=\{F=c\}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y, z)=c\right\}$, then for a point $a \in S$, then

$$
\begin{equation*}
\nabla F(a) \perp T_{a}(S) \tag{5}
\end{equation*}
$$

Example 8. Consider a differentiable function $h: R^{2} \rightarrow \mathbb{R}$. Then graph (h) (the graph of h) seen as a surface in \mathbb{R}^{3} is simply the level set $\{F=0\}$ of the function of 3 variables $F(x, y, z)=f(x, y)-z$. Then, for $a=\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ and $m=\left(x_{0}, y_{0}, z_{0}\right)$ the corresponding point on the graph $\left(z_{0}=h\left(x_{0}, y_{0}\right)\right)$, the vector

$$
\nabla F\left(x_{0}, y_{0}, z_{0}\right)=\frac{\partial h}{\partial x}\left(x_{0}, y_{0}\right) \mathbf{i}+\frac{\partial h}{\partial y}\left(x_{0}, y_{0}\right) \mathbf{j}-\mathbf{k}
$$

is normal to $T_{m}(\operatorname{graph}(h))$. This allows us to find the equation of the tangent plane to the graph.

