PROBLEM ON COMPUTING FLOWS

Consider the surface (paraboloid) Σ given by $x^{2}+y^{2}-z=0,0 \leq z \leq 1$.

1) Parametrize Σ using cylindrical coordinates (that is, viewing it as the surface obtained by rotating $z=y^{2}$ around the z-axis). Compute the flow of \mathbf{r} in two ways: A) by going through the following steps:

- compute the unit normal vector \vec{n}_{Σ} separately by normalizing the gradient of $g(x, y, z)=x^{2}+y^{2}-z$. Make sure your unit normal vector is pointing outwards.
- Compute r$\cdot \vec{n}_{\Sigma}$
- Compute the area element $d S$.
- Integrate $\iint_{\Sigma}\left(\mathbf{r} \cdot \vec{n}_{\Sigma}\right) d S$
B) by going through the following steps (assume one has parametrization $x=$ $x(u, v)$, etc...):
- Use the determinant formula $\vec{F} \cdot d S=\left|\begin{array}{ccc}F_{1} & F_{2} & F_{3} \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v}\end{array}\right| d u d v$ (provided $T_{u} \times T_{v}$ point in the direction of \vec{n}_{Σ}).
- compute the flow as $\iint_{\Sigma} \vec{F} \cdot d S=\iint$ (determinant) $d u d v$

2) Do the same thing as in 1), this time parametrizing Σ as a graph surface: $x=x$, $y=y, z=x^{2}+y^{2}$ so the parameters are $(x, y) \in D$, the unit disk in \mathbb{R}^{2}.
3) Put a lid on Σ to enclose a solid region W. Use Gauss divergence theorem to compute the flow of \mathbf{r} through Σ. Compare your result with 1) and 2).
