PROBLEM ON COMPUTING FLOWS

Consider the surface (paraboloid) Σ given by $x^2 + y^2 - z = 0, 0 \le z \le 1$.

1) Parametrize Σ using cylindrical coordinates (that is, viewing it as the surface obtained by rotating $z = y^2$ around the z-axis). Compute the flow of **r** in two ways: A) by going through the following steps:

- compute the unit normal vector $\overrightarrow{n}_{\Sigma}$ separately by normalizing the gradient of $g(x, y, z) = x^2 + y^2 z$. Make sure your unit normal vector is pointing outwards.
- Compute $\mathbf{r} \cdot \overrightarrow{n}_{\Sigma}$
- Compute the area element dS.
- Integrate $\int \int_{\Sigma} (\mathbf{r} \cdot \vec{n}_{\Sigma}) dS$

B) by going through the following steps (assume one has parametrization x = x(u, v), etc...):

• Use the determinant formula $\overrightarrow{F} \cdot dS = \begin{vmatrix} F_1 & F_2 & F_3 \\ \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} & \frac{\partial z}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} & \frac{\partial z}{\partial v} \end{vmatrix} dudv$ (provided

 $T_u \times T_v$ point in the direction of $\overrightarrow{n}_{\Sigma}$).

• compute the flow as $\int \int_{\Sigma} \overrightarrow{F} \cdot dS = \overrightarrow{\int} \int (\text{determinant}) \, du dv$

2) Do the same thing as in 1), this time parametrizing Σ as a graph surface: x = x, y = y, $z = x^2 + y^2$ so the parameters are $(x, y) \in D$, the unit disk in \mathbb{R}^2 .

3) Put a lid on Σ to enclose a solid region W. Use Gauss divergence theorem to compute the flow of **r** through Σ . Compare your result with 1) and 2).