PRACTICE PROBLEMS-ANSWERS TO SOME PROBLEMS

1. Vector geometry

1.1. Given two vectors \vec{a} and \vec{b}, do the equations

$$
\vec{v} \times \vec{a}=\vec{b} \quad \text { and } \quad \vec{v} \cdot \vec{a}=\|a\|
$$

determine the vector \vec{v} uniquely? If so, find an explicit formula of \vec{v} in terms of \vec{a} and \vec{b}.
Answer. The answer is yes. Clearly if a and b are not orthogonal then there is no solution. So assume $a b$ are orthogonal vectors. Let θ the angle between v and a.

$$
\begin{gathered}
v \times a=b \Rightarrow\|b\|=\|a\|\|v\||\sin \theta| \\
v \cdot a=\|a\| \Rightarrow\|a\|=\|a\|\|v\| \cos \theta
\end{gathered}
$$

Hence

$$
\|v\|^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=1+\frac{\|b\|^{2}}{\|a\|^{2}}
$$

so that the length of v is determines

$$
\|v\|=\sqrt{1+\frac{\|b\|^{2}}{\|a\|^{2}}}
$$

also $\theta= \pm \arccos (1 /\|v\|)$. Therefore v is the vector in the perpendicular to b, of given length, such that the angle between x and b is $\pm \frac{\|a\|}{\sqrt{\|a\|^{2}+\|b\|^{2}}}$, depending weather x, a, b is oriented or not.
A more elegant solution: we may assume $a \perp b$, otherwise there is no solution. Then the vectors $a, b, a \times b$ form an orthogonal basis, hence one can write v as a linear combination

$$
v=x a+y b+z a \times b, \quad x, y, z \text { real numbers }
$$

We will then take inner products of v with the vectors $a, b, a \times b$.
First, $v \cdot a=x\|a\|^{2}$. But $v \cdot a=\|a\|$, hence $x=\frac{1}{\|a\|}$.
Also $v \cdot b=y\|b\|^{2}$. But $v \times a=b$ implies $v \perp b$, hence $y=0$.
Finally $v \cdot(a \times b)=z\|a \times b\|^{2}$. But $v \cdot(a \times b)=b \cdot(v \times a)$ (think of the 3×3 determinant expressing the cross product) $=b \cdot b=\|b\|^{2}$. Therefore $z=\frac{\|b\|^{2}}{\|a \times b\|^{2}}$, hence

$$
x=\frac{1}{\|a\|} a+\frac{\|b\|^{2}}{\|a \times b\|^{2}} a \times b
$$

2. Tangent planes \& Lines

2.1. Find the points on the surface $z=x^{2} y^{2}+y+1$ where the tangent plane (to the surface) is parallel to the plane $\alpha:-2 x-3 y+z=1$.
Answer: two planes $A X+B Y+C Z+D=0$ and $A^{\prime} X+B^{\prime} Y+C^{\prime} Z+D=0$ are parallel (or perpendicular) iff their corresponding normal vectors $N=A i+B j+C k$ and $N^{\prime}=A^{\prime} i+B^{\prime} j+C^{\prime} k$ are parallel (perpendicular).
Our surface is the level set $S=\{F=-1\}$, where $F(x, y, z)=x^{2} y^{2}+y-z$. Let $m(x, y, z) \in S$. The normal vector to the tangent plane $T_{m}(S)$ is $N=\nabla F(m)$. The normal vector to the plane α is $N^{\prime}=-2 i-3 j+k$. Then $T_{m}(S) ॥ \alpha$ iff there exists $\lambda \in \mathbb{R}$ such that $\nabla F(m)=\lambda N^{\prime}$, in other words we need to solve the system

$$
\left\{\begin{array}{l}
\frac{\partial F}{\partial x}(x, y, z)=-2 \lambda \\
\frac{\partial F}{\partial y}(x, y, z)=-3 \lambda \\
\frac{\partial F}{\partial z}(x, y, z)=\lambda \\
F(x, y, z)=-1
\end{array}\right.
$$

in other words

$$
\left\{\begin{array}{l}
2 x y^{2}=-2 \lambda \\
2 x^{2} y+1=-3 \lambda \\
-1=\lambda \\
x^{2} y^{2}+y-z=-1
\end{array}\right.
$$

hence $\lambda=-1, x^{2} y=x^{2} y=1, x^{2} y^{2}+y-z=-1$, i.e. $x=y=1, z=3$, so $m=(1,1,3)$.
2.2. Find a unit vector normal to the graph of $f(x, y)=e^{x} y$ at the point $(-1,1)$.

Answer:

$$
\operatorname{Graph}(f)=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f(x, y)\right\}=\{F=0\} \quad[\text { level set }]
$$

where $F(x, y, z)=f(x, y)-z$. Let $m=(-1,1, f(-1,1))=\left(-1,1, e^{-1}\right)$ the corresponding point on the graph. Then $\nabla F(m)$ is a normal vector to the tangent plane $T_{m}(\{F=0\})$. But

$$
\nabla F(m)=\left(\frac{\partial f}{\partial x}(-1,1), \frac{\partial f}{\partial y}(-1,1),-1\right)=\ldots
$$

2.3. Show that the graphs of $f(x, y)=x^{2}+y^{2}$ and $g(x, y)=-x^{2}-y^{2}+x y^{3}$ are tangent at $(0,0)$.
Answer: $f(0,0)=g(0,0)=0$, so there graphs share the point $O(0,0,0)$. One has to check then that $\operatorname{graph}(f)$ and $\operatorname{graph}(g)$ have the same tangent plane at $(0,0)$. To see this, one has to check that $\frac{\partial f}{\partial x}(0,0)=\frac{\partial g}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)=\frac{\partial g}{\partial y}(0,0)$.
2.4. Consider the surface $z^{2}=x^{2}+y^{2}$. Is the tangent plane at the point $(0,0,0)$ well defined?
Answer: not really since this is the level set $\{F=0\}$ where $F(x, y, z)=x^{2}+y^{2}-z^{2}$ and $\nabla F(0,0,0)=0$.

3. Curves in \mathbb{R}^{3}

3.1. The curve $\mathbf{c}(t)=\left(t, t^{2}, t^{3}\right)$ crosses the plane $4 x+2 y+z=24$ at a single point. Find that point and calculate the cosine of the angle between the tangent vector at \mathbf{c} at that point and the normal vector to the plane.
Answer: first one needs to find t_{0} such that $c\left(t_{0}\right) \in$ plane, i.e. solve the equation $4 t+2 t^{2}+t^{3}=24$. Then one needs to find (cosine of) the angle between (the velocity at $\left.t_{0}\right) c^{\prime}\left(t_{0}\right)$ and the normal to the plane $N=4 i+2 j+k$. For this use the inner product.
3.2. A particle travels on the surface of a fixed sphere of radius R centered at the origin, i.e.

$$
\|\gamma(t)\|=R, \quad \forall t
$$

where $\gamma(t) \in \mathbb{R}^{3}$ is the position of the particle at time t. Prove that the velocity is always perpendicular on the position vector, i.e.

$$
\gamma^{\prime}(t) \cdot \overrightarrow{\gamma(t)}=0, \quad \forall t
$$

Answer: let $\phi(t)=\|\gamma(t)\|^{2}=\gamma(t) \dot{\gamma}(t)$. Then $\phi(t)=R^{2}$, for all t, hence $\phi^{\prime}(t)=0$. On the other hand by the Leibniz rule, $\phi^{\prime}(t)=2 \gamma^{\prime}(t) \cdot \gamma(t)$, hence $\gamma^{\prime}(t) \cdot \gamma(t)=0$.
3.3. a) Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $V(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$, or in other words $V(\vec{r})=\frac{1}{r}$. Compute ∇V.
b) The equation of motion of a planet that orbits the Sun satisfies the equation of motion

$$
c^{\prime \prime}(t)=-G M \frac{\overrightarrow{c(t)}}{\|c(t)\|^{3}}
$$

where $c(t)=(x(t), y(t), z(t))$ is the position of the planet at time t. Prove that the vector (angular momentum)

$$
\vec{L}=\overrightarrow{c(t)} \times c^{\prime}(t)
$$

is independent of time.
c) Prove that the quantity (energy)

$$
E=\frac{1}{2} m\left\|c^{\prime}(t)\right\|^{2}-\frac{G M m}{\|c(t)\|}
$$

is independent of time
Answer: differentiate the angular momentum with respect to time

$$
\frac{d}{d t} L(t)=c^{\prime}(t) \times c^{\prime}(t)+c(t) \times c^{\prime \prime}(t)=c(t) \times c^{\prime \prime}(t)=c(t) \times\left(-\frac{G M}{\|c(t)\|^{3}} c(t)\right)=0
$$

since $v \times v=0$, for any vector v.
Differentiate the energy with respect to t :

$$
\begin{aligned}
\frac{d}{d t} E & =\frac{d}{d t}\left(\frac{m}{2} c^{\prime}(t) \cdot c^{\prime}(t)-G M V(c(t))\right)=m c^{\prime}(t) \cdot c^{\prime \prime}(t)-G M \nabla V(c(t)) \cdot c^{\prime}(t) \\
& =m c^{\prime}(t) \cdot\left(c^{\prime \prime}(t)-G M \frac{c(t)}{\|c(t)\|^{3}}\right)=0
\end{aligned}
$$

by the equation of motion.
Note: since the vector L is constant in time, since $\overrightarrow{c(t)}$ is perpendicular on L (by definition) it follows that $c(t)$ moves in a fixed plane, i.e. the orbit is planar.
3.4. The position of a particle in time is given by

$$
c(t)=(\cos (\pi t), \sin (\pi t), \pi t)
$$

At time $t_{0}=\frac{9}{4}$ the particle is freed of any constraints and starts travelling along the tangent at the constant speed $v=v\left(t_{0}\right)$. Determine how long does it take (starting from t_{0}) the particle to hit the wall given by the equation $x=0$.
Answer: the tangent is given by the velocity vector $c^{\prime}\left(t_{0}\right)$. It means that at time $t>t_{0}$, the position of the particle is given by

$$
l(t)=l\left(t_{0}\right)+\left(t-t_{0}\right) c^{\prime}\left(t_{0}\right)=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, \frac{9 \pi}{4}\right)+\left(t-\frac{9}{4}\right)\left(-\frac{\pi \sqrt{2}}{2}, \frac{\pi \sqrt{2}}{2}, \pi\right)
$$

We need to determine t such that the points $l(t)$ is in the plane $x=0$, i.e. need to solve the equation

$$
\frac{\sqrt{2}}{2}-\frac{\pi \sqrt{2}}{2}\left(t-\frac{9}{4}\right)=0
$$

so $t=\frac{1}{\pi}+\frac{9}{4}$.

4. Limits

4.1. Determine whether the following limit exists:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (2 x)-2 x+y}{x^{3}+y}
$$

Answer: $\lim _{t \rightarrow 0} f(0, t)=0$ trivially, while $\lim _{t \rightarrow 0} f(t, 0)=\lim _{t \rightarrow 0} \frac{\sin (2 t)-2 t}{t^{3}}=\frac{4}{3}$ by L'Hopital. So the answer is no.

5. Differentiability

5.1. a) True or false: If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous and $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(1,0)$ exist, then f is differentiable at $(1,0)$. [false]
b) True or false: if $\partial_{\vec{v}} f$ is the directional derivative of f along the vector \vec{v}, then $\partial_{\vec{j}} f(1,0,1)=f_{y}(1,0,1)$. [true]
c) True or false: if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function such that $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(0,1)$ exist, then f is continuous at $(1,0)$ [false]
g) Assume $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous and $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(1,0)$ exist.

True or false: if $\vec{v}=p \vec{i}+q \vec{j}$ is a unit vector, then $\partial_{\vec{v}} f(1,0)=\nabla f(1,0) \cdot \vec{v}$. [false- you need f to be differentiable, and mere existence of partial derivatives does not ensure this]
5.2 . a) Argue that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y, z)=\left(x+e^{z}+y, y x^{2}\right)$ is differentiable.
Answer: the partial derivatives of its components

$$
\left(f_{1}\right)_{x}=1,\left(f_{1}\right)_{y}=1,\left(f_{1}\right)_{z}=e^{z},\left(f_{2}\right)_{x}=2 x y,\left(f_{2}\right)_{y}=x^{2},\left(f_{2}\right)_{z}=0
$$

are all continuous (everywhere) functions $\left(f_{1}\right)_{x}, \cdots: \mathbb{R}^{3} \rightarrow \mathbb{R}$, therefore f is differentiable everywhere.

6. Chain Rule

6.1. Use the chain rule to find u_{x}, u_{y}, u_{z} for $u=e^{x} \cos \left(y z^{2}\right)$.

Answer: $u_{y}=-e^{x} \sin \left(y z^{2}\right) \cdot\left(2 z^{2}\right)-2 e^{x} z^{2} \sin \left(y z^{2}\right)$.
6.2. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a differentiable map, such that $g_{z}(0,1)=1, g_{y}(0,1)=2$. Determine the rate of change of $g($ at $(1,0))$ along the circle centered at the origin and radius 1 . In other words, compute $\frac{\partial g}{\partial \theta}$ at $(1,0)$ where $x=r \cos \theta$ and $y=r \sin \theta$.

Answer: for general x, y we have

$$
\begin{aligned}
\frac{\partial g}{\partial \theta} & =\frac{\partial g}{\partial x}(r \cos \theta, r \sin \theta)(-r \sin \theta)+\frac{\partial g}{\partial y}(r \cos \theta, r \sin \theta)(r \cos \theta) \\
& =-r \sin \theta g_{x}(x, y)+r \cos \theta g_{y}(x, y), \quad x=r \cos \theta, y=r \sin \theta
\end{aligned}
$$

Therefore $\frac{\partial g}{\partial \theta}(1,0)=\frac{\partial g}{\partial y}(1,0)$.
6.3. Let $(x(t), y(t))$ a path in the plane $0 \leq t \leq 1$, and let $f(x, y)$ a C^{1} function of two variables. Assume that

$$
x^{\prime}(t) f_{x}(x(t), y(t))+y^{\prime}(t) f_{y}(x(t), y(t)) \leq 0
$$

Prove that $f(x(1), y(1)) \leq f(x(0), y(0))$.
Answer: let $\phi(t)=f(x(t), y(t))$. The condition in the problem reads (via chain rule) $\phi^{\prime}(t) \leq 0$, therefore $\phi(t)$ is decreasing, hence $f(x(0), y(0))=\phi(0) \geq \phi(1)=$ $f(x(1), y(1))$.

7. Gradients

7.1. Let $f(x, y, z)=(\sin (x y)) e^{-z^{2}}$. In what direction from $(1, \pi, 0)$ should one proceed to increase f most rapidly? Express your answer as a unit vector.
Answer: since f is differentiable (argue this point), the direction of greatest increase is that of the gradient, so

$$
v=\frac{\nabla f(1, \pi, 0)}{\|\nabla f(1, \pi, 0)\|}=\ldots
$$

