PRACTICE PROBLEMS

1. Vector geometry

1.1. Find the equation of the plane that passes through $A(1,2,0), B(0,1,-2)$, $C(4,0,1)$.
1.2. Find the distance from the point $(2,1,-2)$ to the plane

$$
x-2 y+2 z+5=0
$$

1.3. Given two vectors \vec{a} and \vec{b}, do the equations

$$
\vec{v} \times \vec{a}=\vec{b} \quad \text { and } \quad \vec{v} \cdot \vec{a}=\|a\|
$$

determine the vector \vec{v} uniquely? If so, find an explicit formula of \vec{v} in terms of \vec{a} and \vec{b}.

2. Tangent planes \& Lines

2.1. Find the points on the surface $z=x^{2} y^{2}+y+1$ where the tangent plane (to the surface) is parallel to the plane $-2 x-3 y+z=1$.
2.2. Find the tangent plane to the graph of the function

$$
f(x, y)=\frac{x}{x+y}
$$

at the point $\left(x_{0}, y_{0}\right)=(1,0)$.
2.3. Find a unit vector normal to the graph of $f(x, y)=e^{x} y$ at the point $(-1,1)$.
2.4. Show that the graphs of $f(x, y)=x^{2}+y^{2}$ and $g(x, y)=-x^{2}-y^{2}+x y^{3}$ are tangent at $(0,0)$.
2.5. Consider the surface $z^{2}=x^{2}+y^{2}$. Is the tangent plane at the point $(0,0,0)$ well defined?

3. Curves in \mathbb{R}^{3}

3.1. The curve $\mathbf{c}(t)=\left(t, t^{2}, t^{3}\right)$ crosses the plane $4 x+2 y+z=24$ at a single point. Find that point and calculate the cosine of the angle between the tangent vector at \mathbf{c} at that point and the normal vector to the plane.
3.2. A particle travels on the surface of a fixed sphere of radius R centered at the origin, i.e.

$$
\|\gamma(t)\|=R, \quad \forall t
$$

where $\gamma(t) \in \mathbb{R}^{3}$ is the position of the particle at time t. Prove that the velocity is always perpendicular on the position vector, i.e.

$$
\gamma^{\prime}(t) \cdot \overrightarrow{\gamma(t)}=0, \quad \forall t
$$

3.3. a) Let $V: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by $V(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}$, or in other words $V(\vec{r})=\frac{1}{r}$. Compute ∇V.
b) The equation of motion of a planet that orbits the Sun satisfies the equation of motion

$$
c^{\prime \prime}(t)=-G M \frac{\overrightarrow{c(t)}}{\|c(t)\|^{3}}
$$

where $c(t)=(x(t), y(t), z(t))$ is the position of the planet at time t. Prove that the vector (angular momentum)

$$
\vec{L}=\overrightarrow{c(t)} \times c^{\prime}(t)
$$

is independent of time.
c) Prove that the quantity (energy)

$$
E=\frac{1}{2} m\left\|c^{\prime}(t)\right\|^{2}-\frac{G M m}{\|c(t)\|}
$$

is independent of time
3.4. The position of a particle in time is given by

$$
c(t)=(\cos (\pi t), \sin (\pi t), \pi t)
$$

At time $t_{0}=\frac{5 \pi}{2}$ the particle is freed of any constraints and starts travelling along the tangent at the constant speed $v=v\left(t_{0}\right)$. Determine how long does it take (starting from t_{0}) the particle to hit the wall given by the equation $x=0$.

4. Limits

4.1. Determine whether the following limit exists:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (2 x)-2 x+y}{x^{3}+y}
$$

5. Differentiability

5.1. Compute f_{x}, f_{y}, f_{z} and evaluate them at the indicated points
a) $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}} ; \quad(3,0,4)$
b) $f(x, y, z)=x \sqrt{x^{2}+y^{2}+z^{2}} ; \quad(2,1,3)$
c) $f(x, y, z)=x y+e^{x} \cos y ; \quad\left(1, \frac{\pi}{2}, 0\right)$
5.2. Compute the matrix of partial derivatives of the function $f(x, y)=(x+y, x-$ $y, x y)$.
5.3. a) True or false: If $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous and $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(1,0)$ exist, then f is differentiable at $(1,0)$.
b) True or false: if $\partial_{\vec{v}} f$ is the directional derivative of f along the vector \vec{v}, then $\partial_{\vec{j}} f(1,0,1)=f_{y}(1,0,1)$.
c) True or false: if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a function such that $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(0,1)$ exist, then f is continuous at $(1,0)$.
d) Give the definition of the directional derivative $\partial_{\vec{v}} f\left(x_{0}, y_{0}\right)$ where \vec{v} is some unit vector in \mathbb{R}^{2} and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a function.
e) Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, give the definition of the tangent plane at $(1,0)$ to the graph of f (provided it exists).
f) Assume $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is differentiable and $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(1,0)$ exist.

True or false: if $\vec{v}=p \vec{i}+q \vec{j}$ is a unit vector, then $\partial_{\vec{v}} f(1,0)=p$.
g) Assume $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous and $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(1,0)$ exist.

True or false: if $\vec{v}=p \vec{i}+q \vec{j}$ is a unit vector, then $\partial_{\vec{v}} f(1,0)=\nabla f(1,0) \cdot \vec{v}$.
5.4. a) Argue that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y, z)=\left(x+e^{z}+y, y x^{2}\right)$ is differentiable.
b) Compute an approximate value for $f(1.1,0,-0.9)$.
5.5. $\quad f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}}, & (x, y) \neq 0 \\ 0, & (x, y)=(0,0)\end{array}\right.$.
a) Compute $\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)$, and $\partial_{\vec{v}} f(0,0)$ for any unit vector \bar{v}.
b) Is f differentiable at $(0,0)$?

6. Chain rule

6.1. Use the chain rule to find u_{x}, u_{y}, u_{z} for $u=e^{x} \cos \left(y z^{2}\right)$.
6.2. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a differentiable map, such that $g_{z}(0,1)=1, g_{y}(0,1)=2$. Determine the rate of change of g (at $(1,0))$ along the circle centered at the origin and radius 1 . In other words, compute $\frac{\partial g}{\partial \theta}$ at $(1,0)$ where $x=r \cos \theta$ and $y=r \sin \theta$.
6.3. Let $(x(t), y(t))$ a path in the plane $0 \leq t \leq 1$, and let $f(x, y)$ a C^{1} function of two variables. Assume that

$$
x^{\prime}(t) f_{x}(x(t), y(t))+y^{\prime}(t) f_{y}(x(t), y(t)) \leq 0
$$

Prove that $f(x(1), y(1)) \leq f(x(0), y(0))$.
6.4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a differentiable function and $h=f\left(\frac{x+y}{x-y}\right)$. Prove that $h(z, y)$ satisfies the equation

$$
x \frac{\partial h}{\partial x}+y \frac{\partial h}{\partial y}=0
$$

6.5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=x^{2}+y$ and $h: \mathbb{R}^{2} \rightarrow \mathbb{R}, h(u)=(\sin (3 u), \cos (8 u))$. Let $g(u)=f(h(u))$, for $u \in \mathbb{R}$. Compute $g^{\prime}(0)$ both directly and by using the chain rule.

7. Gradients

7.1. Let $f(x, y, z)=(\sin (x y)) e^{-z^{2}}$. In what direction from $(1, \pi, 0)$ should one proceed to increase f most rapidly? Express your answer as a unit vector.

