PRACTICE PROBLEMS

1. Vector geometry

1.1. Find the equation of the plane that passes through A(1,2,0), B(0,1,-2), C(4,0,1).

1.2. Find the distance from the point (2, 1, -2) to the plane

$$x - 2y + 2z + 5 = 0$$

1.3. Given two vectors \overrightarrow{a} and \overrightarrow{b} , do the equations

$$\overrightarrow{v} \times \overrightarrow{a} = \overrightarrow{b}$$
 and $\overrightarrow{v} \cdot \overrightarrow{a} = ||a||$

determine the vector \overrightarrow{v} uniquely? If so, find an explicit formula of \overrightarrow{v} in terms of \overrightarrow{a} and \overrightarrow{b} .

2. TANGENT PLANES & LINES

2.1. Find the points on the surface $z = x^2y^2 + y + 1$ where the tangent plane (to the surface) is parallel to the plane -2x - 3y + z = 1.

2.2. Find the tangent plane to the graph of the function

$$f(x,y) = \frac{x}{x+y}$$

at the point $(x_0, y_0) = (1, 0)$.

2.3. Find a unit vector normal to the graph of $f(x, y) = e^x y$ at the point (-1, 1).

2.4. Show that the graphs of $f(x, y) = x^2 + y^2$ and $g(x, y) = -x^2 - y^2 + xy^3$ are tangent at (0, 0).

2.5. Consider the surface $z^2 = x^2 + y^2$. Is the tangent plane at the point (0, 0, 0) well defined?

3. Curves in \mathbb{R}^3

3.1. The curve $\mathbf{c}(t) = (t, t^2, t^3)$ crosses the plane 4x + 2y + z = 24 at a single point. Find that point and calculate the cosine of the angle between the tangent vector at \mathbf{c} at that point and the normal vector to the plane.

3.2. A particle travels on the surface of a fixed sphere of radius R centered at the origin, i.e.

$$\|\gamma(t)\| = R, \quad \forall t$$

where $\gamma(t) \in \mathbb{R}^3$ is the position of the particle at time t. Prove that the velocity is always perpendicular on the position vector, i.e.

$$\gamma'(t) \cdot \gamma(t) = 0, \quad \forall t$$

3.3. a) Let $V : \mathbb{R}^3 \to \mathbb{R}$ given by $V(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$, or in other words $V(\overrightarrow{r}) = \frac{1}{r}$. Compute ∇V .

b) The equation of motion of a planet that orbits the Sun satisfies the equation of motion

$$c''(t) = -GM \frac{c(t)}{\|c(t)\|^3}$$

where c(t) = (x(t), y(t), z(t)) is the position of the planet at time t. Prove that the vector (angular momentum)

$$\overrightarrow{L} = \overrightarrow{c(t)} \times c'(t)$$

is independent of time.

c) Prove that the quantity (energy)

$$E = \frac{1}{2}m\|c'(t)\|^2 - \frac{GMm}{\|c(t)\|}$$

is independent of time

3.4. The position of a particle in time is given by

$$c(t) = (\cos(\pi t), \sin(\pi t), \pi t)$$

At time $t_0 = \frac{5\pi}{2}$ the particle is freed of any constraints and starts travelling along the tangent at the constant speed $v = v(t_0)$. Determine how long does it take (starting from t_0) the particle to hit the wall given by the equation x = 0.

4. Limits

4.1. Determine whether the following limit exists:

$$\lim_{(x,y)\to(0,0)} \frac{\sin(2x) - 2x + y}{x^3 + y}$$

5. Differentiability

5.1. Compute f_x, f_y, f_z and evaluate them at the indicated points

a)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2};$$
 (3,0,4)
b) $f(x, y, z) = x\sqrt{x^2 + y^2 + z^2};$ (2,1,3)
c) $f(x, y, z) = xy + e^x \cos y;$ (1, $\frac{\pi}{2}, 0$)

5.2. Compute the matrix of partial derivatives of the function f(x, y) = (x + y, x - y, xy).

5.3. **a)** True or false: If $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous and $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(1,0)$ exist, then f is differentiable at (1,0).

b) True or false: if $\partial_{\overrightarrow{v}} f$ is the directional derivative of f along the vector \overrightarrow{v} , then $\partial_{\overrightarrow{i}} f(1,0,1) = f_y(1,0,1)$.

c) True or false: if $f : \mathbb{R}^2 \to \mathbb{R}$ is a function such that $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(0,1)$ exist, then f is continuous at (1,0).

d) Give the definition of the directional derivative $\partial_{\overrightarrow{v}} f(x_0, y_0)$ where \overrightarrow{v} is some unit vector in \mathbb{R}^2 and $f: \mathbb{R}^2 \to \mathbb{R}$ a function.

PRACTICE PROBLEMS

e) Given a function $f : \mathbb{R}^2 \to \mathbb{R}$, give the definition of the tangent plane at (1,0) to the graph of f (provided it exists).

f) Assume $f : \mathbb{R}^2 \to \mathbb{R}$ is differentiable and $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(1,0)$ exist.

True or false: if $\overrightarrow{v} = p \overrightarrow{i} + q \overrightarrow{j}$ is a unit vector, then $\partial_{\overrightarrow{v}} f(1,0) = p$.

g) Assume $f : \mathbb{R}^2 \to \mathbb{R}$ is *continuous* and $\frac{\partial f}{\partial x}(1,0)$ and $\frac{\partial f}{\partial y}(1,0)$ exist.

True or false: if $\overrightarrow{v} = p \overrightarrow{i} + q \overrightarrow{j}$ is a unit vector, then $\partial_{\overrightarrow{v}} f(1,0) = \nabla f(1,0) \cdot \overrightarrow{v}$.

5.4. **a)** Argue that the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ given by $f(x, y, z) = (x + e^z + y, yx^2)$ is differentiable.

b) Compute an approximate value for f(1.1, 0, -0.9).

5.5.
$$f : \mathbb{R}^2 \to \mathbb{R}, f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq 0\\ 0, & (x,y) = (0,0) \end{cases}$$

a) Compute $\frac{\partial f}{\partial x}(0,0)$, $\frac{\partial f}{\partial y}(0,0)$, and $\partial_{\overrightarrow{v}}f(0,0)$ for any unit vector \overline{v} .

b) Is f differentiable at (0,0)?

6. Chain rule

6.1. Use the chain rule to find u_x, u_y, u_z for $u = e^x \cos(yz^2)$.

6.2. Let $g : \mathbb{R}^2 \to \mathbb{R}$ a differentiable map, such that $g_z(0,1) = 1$, $g_y(0,1) = 2$. Determine the rate of change of g (at (1,0)) along the circle centered at the origin and radius 1. In other words, compute $\frac{\partial g}{\partial \theta}$ at (1,0) where $x = r \cos \theta$ and $y = r \sin \theta$.

6.3. Let (x(t), y(t)) a path in the plane $0 \le t \le 1$, and let f(x, y) a C^1 function of two variables. Assume that

$$x'(t)f_x(x(t), y(t)) + y'(t)f_y(x(t), y(t)) \le 0$$

Prove that $f(x(1), y(1)) \le f(x(0), y(0))$.

6.4. Let $f : \mathbb{R} \to \mathbb{R}$ a differentiable function and $h = f(\frac{x+y}{x-y})$. Prove that h(z, y) satisfies the equation

$$x\frac{\partial h}{\partial x} + y\frac{\partial h}{\partial y} = 0$$

6.5. Let $f : \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = x^2 + y$ and $h : \mathbb{R}^2 \to \mathbb{R}$, $h(u) = (\sin(3u), \cos(8u))$. Let g(u) = f(h(u)), for $u \in \mathbb{R}$. Compute g'(0) both directly and by using the chain rule.

7. Gradients

7.1. Let $f(x, y, z) = (\sin(xy))e^{-z^2}$. In what direction from $(1, \pi, 0)$ should one proceed to increase f most rapidly? Express your answer as a unit vector.