PRACTICE PROBLEM

Let H the spiral staircase

$$
x=u \cos \theta, y=u \sin \theta, z=\theta, \quad 0 \leq u \leq 1,0 \leq \theta \leq 2 \pi
$$

(You might take a look at the picture on p. 464.)
a) Parametrize the boundary curve ∂H. The boundary has four parts

$$
\partial H=\gamma_{1}+\gamma_{2}-\gamma_{3}-\gamma_{4}
$$

corresponding to

$$
\theta=0, \quad r=1, \quad \theta=2 \pi, \quad u=0
$$

respectively. Pay attention to the orientation of the boundary. (Note that H is parametrized by the box $[0,1] \times[0,2 \pi]$ in the (u, θ)-plane. The boundary of H corresponds to the boundary of that box.)
2) Consider the vector field $\vec{F}=x \mathbf{i}-y \mathbf{j}$. Prove that $\vec{F}=\operatorname{curl} \vec{G}$, with $\vec{G}=x y \mathbf{k}$. (why does such a vector field \vec{G} exist?)
3) Compute the flow of \vec{F} through H by using 2) and Stokes theorem.
4) Find a scalar function (potential) $\phi(x, y, z)$ such that $\nabla \phi=\vec{F}$ (why does such a potential exist?)
5) Compute the circulation of \vec{F} around the oriented boundary ∂H.

