TWO VECTOR FIELDS

1. Setup
1.1. In \mathbb{R}^{3} :

Functs. $\phi \xrightarrow{\nabla}$ V. fields $\vec{F} \xrightarrow{\text { curl }}$ V. fields $\vec{G} \xrightarrow{\text { div }} \quad$ Functs. f Pts. $\quad \stackrel{\partial}{\longleftarrow}$ Curves $\gamma \stackrel{\partial}{\longleftarrow}$ Surfaces $\Sigma \longleftarrow \partial \quad$ Solid domains W
Note that

$$
\partial(\partial W)=0, \quad \partial(\partial \Sigma)=0
$$

and the analogue of this is

$$
\operatorname{curl}(\nabla \phi)=0, \quad \operatorname{div}(\operatorname{curl} \vec{F})=0
$$

The three theorems of "integrals on the boundary" are:

$$
\begin{gathered}
\int_{\gamma} \nabla \phi=\phi(Q)-\phi(P) \quad P, Q=\partial \gamma=\text { endpoints of } \gamma \\
\int_{\partial \Sigma} \vec{F}=\iint_{\Sigma} \operatorname{curl} \vec{F} \cdot d S \quad[\text { Stokes }] \\
\iint_{\partial W} \vec{G} \cdot d S=\iiint_{W}(\operatorname{div} \vec{G}) d V \quad \text { [Gauss] } \\
\text { 2. TWO VECTOR FIELDS }
\end{gathered}
$$

2.1. Consider the vector field $\vec{G}=\frac{\mathbf{r}}{r^{3}}$ (the negative of the gravitational vector field).
a) Prove that $\operatorname{div} \vec{G}=0(\vec{G}$ is incompressible $)$.
b) Prove that

$$
\iint_{\Sigma_{R}} \vec{G} \cdot d S=4 \pi
$$

where Σ_{R} is the sphere of radius R centered at the origin.
c) Prove (using Stokes theorem) that \vec{G} is not the curl of another vector field \vec{F} (well-defined on $\left.\mathbb{R}^{3}-(0,0,0)\right)$ such that $\operatorname{curl} \vec{F}=\vec{G}$.
d) What is so special about the geometry of $\mathbb{R}^{3}-(0,0,0)$ that a vector field with the properties of \vec{G} exists?
e) (Gauss's law) Assume Σ is a closed (simple, oriented) surface in \mathbb{R}^{3}, not passing through the origin $(0,0,0)$. Use Gauss' divergence theorem to prove that

$$
\iint_{\Sigma} \vec{G} \cdot d S= \begin{cases}4 \pi, & \text { if }(0,0,0) \text { is in the interior of } \Sigma \\ 0, & \text { otherwise }\end{cases}
$$

2.2. (Side computation) Let $\vec{F}=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ a vector field in \mathbb{R}^{2}. Prove that curl $F=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial x}\right) \mathbf{k}$.
2.2.1. Consider the following vector field in \mathbb{R}^{2} :

$$
\vec{F}=\frac{-y \mathbf{i}+x \mathbf{j}}{x^{2}+y^{2}}
$$

a) Prove that curl $\vec{F}=0$ (i.e. $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial x}=0$)
b) Compute the work of \vec{F} along C_{R}, the circle of radius R oriented counterclockwise.
c) Prove that \vec{F} is not a conservative vector field. In other words, prove that there does not exist a (potential) function ϕ (well defined on $\left.\mathbb{R}^{2}-(0,0)\right)$ such that $\vec{F}=\nabla \phi$.
d) What is so special about the geometry of $\mathbb{R}^{2}-(0,0)$ that a vector field with the properties of \vec{F} exists?
e) Let γ an arbitrary simple (without self-intersections) closed curve in \mathbb{R}^{2}, not passing through the origin (oriented counter-clockwise). Use Green's formula to prove that

$$
\frac{1}{2 \pi} \int_{\gamma} \vec{F}= \begin{cases}1, & \gamma \text { circles around the origin }(0,0) \\ 0, & \text { otherwise }\end{cases}
$$

