
ELLIPSES

Problem: Find the points on the locus

Q(x, y) = 865x2 − 294xy + 585y2 = 1450

closest to, and farthest from, the origin.

Answer.

This is a Lagrange multiplier problem: we want to extremize f(x, y) = x2 + y2

subject to the constraint Q(x, y) = 1450. To do this we look for points on the locus
where the gradient of f + λQ is zero: this amounts to solving the system

∇(f + λQ) = (2x + λ(1730x− 294y), 2y + λ(−294x + 1070y)) = (0, 0)

(together with the constraint equation: that gives us three equations in three un-
knowns (x, y, and λ). But if we stare at this for a minute, we start to suspect
that it might be easier to deal algebraically with the related problem, of finding the
maximum of the function Q on the unit circle f(x, y) = 1: that question requires
us to find the points where the gradient of Q + λf vanishes – which is pretty much
what we would get if we multiplied our original problem by λ−1. After eliminating
superfluous factors of two, the new problem gives us the system

λx + 865x− 147y = 0 , λy − 147x + 565y = 0 ,

which can be rewritten in matrix notation in the form

(A + λ1)x = 0 ,

where x denotes the vector (x, y), 1 denotes the two-by-two ‘identity’ matrix (with
ones down the diagonal, and zero elsewhere), and

A =
[

865 −147
−147 585

]
.

Now it’s useful to recall that square matrices are invertible (ie, have inverse
matrices, in the sense the the matrix product of a matrix and its inverse equals the
identity matrix) if and only if its determinant is nonzero. [This is related to the
geometric interpretation of determinants as volumes: if the determinant vanishes,
the linear transformation defined by the (square) matrix squashes a rectangle flat.]
So if the determinant of the matrix A + λ1 is not zero, there can be no nontrivial
solutions to our system of equations – because we can then multiply our equation
on the left by the inverse matrix (A + λ1)−1, to obtain (only) the trivial solution

(A + λ1)−1(A + λ1)x = 1 · x = x = 0 .

Thus in order for a nontrivial solution to exist, λ must satisfy the quadratic equation
det(A + λ1) = 0, ie

det
[

865 + λ −147
−147 585 + λ

]
= (λ + 865)(λ + 585)− (−147)2 = 0 ,

which multiplies out to

λ2 + 1450λ + [(865× 585− 1472) = 484, 416] = 0 .
1
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According to the quadratic formula, then,

λ = 1
2 [−1450±

√
(14502 − 4× 484, 416)] ;

but
14502 − 4× 484, 416 = 2, 102, 500− 1, 937, 664 = 164, 836 = 4062 ,

so
λ = 1

2 [−1450± 406] = −522 (= −9 · 58) or − 928 (= −16 · 58) .

Substituting the first of these values into our original matrix equation gives us[
865− 522 −147
−147 585− 522

] [
x
y

]
= 0 ,

but the matrix factors as[
343 −147
−147 63

]
=

[
7 · 49 −3 · 49
−7 · 21 3 · 21

]
and thus kills the vector (3, 7) – as well as its normalized multiple

x+ =
1√
58

(3, 7) .

Similarly: substituting in the second root yields the matrix[
865− 928 −147
−147 585− 928

]
=

[
−63 −147
−147 −343

]
,

which admits a similar factorization, and consequently kills the normalized vector

x− =
1√
58

(−7, 3) .

We can use these to answer the original question, about points on the curve Q =
1450 at greatest and least distance from the origin, by noting that the function Q
is quadratic, in the sense that for any real number t, we have

Q(tx, ty) = t2Q(x, y) ,

The points on the locus Q = 1450 where f is greatest are just multiples tx± of
the points on the unit circle where Q is greatest, by the argument above (about
inverting λ); so all we need to do is find the right scaling factor t. It’s not hard to
calculate that

Q(x+) = 58 · 9 , Q(x−) = 58 · 16 ,

from which it follows easily that 5
3x+ and 5

4x− lie on the locus Q = 1450 = 25 · 58:
they are the extreme points we sought. Note by the way that these vectors (like
x+ and x−) are perpendicular: their dot product is

25
12 · 58

(3 · (−7) + 7 · 3) = 0 .

In other words: the locus Q = 1450 is an ellipse, with the first vector above as the
semimajor, and the second vector the semiminor, axes. It can be obtained from
the standard ellipse

9X2 + 16Y 2 = 25
by applying the rotation matrix

[x+x−] :=
1√
58

[
3 −7
7 3

]
=

[
cos θ − sin θ
sin θ cos θ

]
:= R(θ)
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through the angle satisying tan θ = sin θ/ cos θ = 7/3. [Note that

R(θ) · e1 = x+, R(θ) · e2 = x− ,

where e1 = (1, 0), e2 = (0, 1) are the standard unit vectors.] In fact

Q(x, y) = 9(3x + 7y)2 + 16(−7x + 3y)2 ;

writing this out gives

9(9x2 + 42xy + 49y2) + 16(49x2 − 42xy + 9y2) ,

which equals

[9 · 9 + 16 · 49 = 865]x2 + [42 · (9− 16) = −294]xy + [9 · 49 + 16 · 9 = 585]y2 .

2 For clarity, here is another example, this time with smaller numbers:
Problem: Find the principal axes (ie the semimajor and semiminor axes) for

the ellipse Q(x, y) = 23x2 + 14xy + 23y2 = 17.
Solution: We need to find the eigenvectors of the matrix[

23 7
7 23

]
= B ;

these are the (nontrivial) vectors v± satisfying the eigenvalue equation (B +
λ±)v± = 0. [Eigen comes from German, where it signifies something like ‘proper’
or ‘characteristic’. It has become standard in mathematics (and in quantum me-
chanics) in this and related contexts.] Thus we need to solve the quadratic equation

det
[

23 + λ 7
7 23 + λ

]
= (23 + λ)2 − 72 = λ2 + 46λ + [529− 49 = 480] = 0 .

This has solutions
λ± = 1

2 [−46±
√

(462 − 4 · 480)] ;

but the term under the square root sign equals 2116 − 1920 = 196 = 132, so
λ+ = −16 and λ− = −30. It follows that

B + λ+ =
[

23− 16 7
7 23− 16

]
=

[
7 7
7 7

]
which kills the normalized vector v+ = 1√

2 (1,−1), while

B + λ− =
[

23− 30 7
7 23− 30

]
=

[
−7 7
7 −7

]
kills the vector v− = 1√

2 (1, 1). In this case the rotation matrix is

R(φ) =
1√
2

[
1 1
−1 1

]
,

defined by a 45-degree rotation (since tanφ = 1), and the original equation can be
rewritten as

λ+(v+ · x)2 + λ−(v− · x)2 = 8(x− y)2 + 15(x + y)2 .

In general the normalized eigenvectors satisfy Q(v±) = −λ±, so by rescaling (as
in the previous problem) we find that the principal axes of the ellipse Q = 17 are
defined by the vectors

√
34
8

(1, 1) and
√

1120
60

(1,−1) .
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3 In general, the n-dimensional Lagrange multiplier problem for a quadratic
function

x 7→ (Ax) · x : Rn → R
defined by a symmetric n×n matrix A will have n nontrivial (normalized, mutually
orthogonal) eigenvectors v1, . . . ,vn satisfying the eigenvalue equation Avk = λkvk,
and the formula above generalizes to

Q(x) =
k=n∑
k=1

λk(vk · x)2 .

Astronomers use this, for example, to study elliptical galaxies (which, being three-
dimensional objects, have three principal axes).

I don’t want to give the (false) impression, that the quadratic equations for such
problems always work out so neatly; they don’t. The problems above were cooked
up using the equation

A(ax + by)2 + B(−bx + ay)2 = Ex2 + 2Fxy + Gy2 ,

where
E = a2A + b2B, F = ab(A−B), and G = b2A + a2B ;

for example in problem 1, A = 9, B = 16, a = 3, and b = 7. If you chase through
the quadratic formula in this generality, you find that for problems of this sort,

λ± = −(a2 + b2){A or B} .

4 The condition that the matrix A be symmetric is important. The symmetry
condition [that the coefficient Aik of the matrix equals the coefficient Aki, with the
order of indices reversed] implies that for any two vectors v and v′, we have

(Av′) · v =
i,k=n∑
i,k=1

Aikv′kvi =
i,k=n∑
i,k=1

Akiviv
′
k = (Av) · v′ .

But now if v and v′ are eigenvectors of a symmetric matrix A, with associated eigen-
values λ and λ′ which are distinct, ie λ 6= λ′, then v and v′ must be orthogonal:
for

Av = λv, Av′ = λ′v′ ,

so on one hand
(Av′) · v = (λ′v′) · v = λ′v′ · v ;

while on the other hand, the symmetry of A implies that

(Av′) · v = (Av) · v′ = (λv) · v′ = λv · v′ .

Thus these two quantities are equal, ie

λ′v′ · v = λv · v′ ;

but the dot product itself is symmetric [v′ · v = v · v′] so

(λ′ − λ)v′ · v = 0 .

But λ and λ′ are distinct, so their difference is nonzero, and we conclude that
v′ · v = 0 – which is to say that the eigenvectors v and v′ are perpendicular.

This has applications in quantum mechanics: in that theory observable physical
quantities are supposed to be represented by (things very much like) symmetric
matrices, and the result of a measurement of the physical quantity in question is
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thought to be an eigenvalue of that matrix. A state of the physical system is
interpreted as a vector, and to say that a measurement of a physical quantity A
in the state v yields the result λ is interpreted as saying that the state v is an
eigenvector of A, with eigenvalue λ: in other words,

Av = λv .

The fact that eigenvectors corresponding to distinct eigenvalues are orthogonal is
a kind of quantum-mechanical analog of the law of the excluded middle in logic:
there is a certain amount of indeterminacy in quantum mechanics - an experiment
might yield λ for a measurement, or it might yield λ′ - but it can’t yield both: the
experiment yields a ‘pure’ state, in which the value of the measured quantity is
well-defined.

This is a difficult and important notion, which lies at the heart of quantum
mechanics, and it’s really because I thought you might be interested in this, rather
than because of the considerable intrinsic mathematical beauty of the theory of
principal axes, that I have written up these notes.


