ELLIPSES

Problem: Find the points on the locus

$$
Q(x, y)=865 x^{2}-294 x y+585 y^{2}=1450
$$

closest to, and farthest from, the origin.

Answer.

This is a Lagrange multiplier problem: we want to extremize $f(x, y)=x^{2}+y^{2}$ subject to the constraint $Q(x, y)=1450$. To do this we look for points on the locus where the gradient of $f+\lambda Q$ is zero: this amounts to solving the system

$$
\nabla(f+\lambda Q)=(2 x+\lambda(1730 x-294 y), 2 y+\lambda(-294 x+1070 y))=(0,0)
$$

(together with the constraint equation: that gives us three equations in three unknowns (x, y, and λ). But if we stare at this for a minute, we start to suspect that it might be easier to deal algebraically with the related problem, of finding the maximum of the function Q on the unit circle $f(x, y)=1$: that question requires us to find the points where the gradient of $Q+\lambda f$ vanishes - which is pretty much what we would get if we multiplied our original problem by λ^{-1}. After eliminating superfluous factors of two, the new problem gives us the system

$$
\lambda x+865 x-147 y=0, \lambda y-147 x+565 y=0
$$

which can be rewritten in matrix notation in the form

$$
(A+\lambda \mathbf{1}) \mathbf{x}=0
$$

where \mathbf{x} denotes the vector $(x, y), \mathbf{1}$ denotes the two-by-two 'identity' matrix (with ones down the diagonal, and zero elsewhere), and

$$
A=\left[\begin{array}{cc}
865 & -147 \\
-147 & 585
\end{array}\right]
$$

Now it's useful to recall that square matrices are invertible (ie, have inverse matrices, in the sense the the matrix product of a matrix and its inverse equals the identity matrix) if and only if its determinant is nonzero. [This is related to the geometric interpretation of determinants as volumes: if the determinant vanishes, the linear transformation defined by the (square) matrix squashes a rectangle flat.] So if the determinant of the matrix $A+\lambda \mathbf{1}$ is not zero, there can be no nontrivial solutions to our system of equations - because we can then multiply our equation on the left by the inverse matrix $(A+\lambda \mathbf{1})^{-1}$, to obtain (only) the trivial solution

$$
(A+\lambda \mathbf{1})^{-1}(A+\lambda \mathbf{1}) \mathbf{x}=\mathbf{1} \cdot \mathbf{x}=\mathbf{x}=0 .
$$

Thus in order for a nontrivial solution to exist, λ must satisfy the quadratic equation $\operatorname{det}(A+\lambda \mathbf{1})=0$, ie

$$
\operatorname{det}\left[\begin{array}{cc}
865+\lambda & -147 \\
-147 & 585+\lambda
\end{array}\right]=(\lambda+865)(\lambda+585)-(-147)^{2}=0
$$

which multiplies out to

$$
\lambda^{2}+1450 \lambda+\left[\left(865 \times 585-147^{2}\right)=484,416\right]=0
$$

According to the quadratic formula, then,

$$
\lambda=\frac{1}{2}\left[-1450 \pm \sqrt{ }\left(1450^{2}-4 \times 484,416\right)\right]
$$

but

$$
1450^{2}-4 \times 484,416=2,102,500-1,937,664=164,836=406^{2}
$$

SO

$$
\lambda=\frac{1}{2}[-1450 \pm 406]=-522(=-9 \cdot 58) \text { or }-928(=-16 \cdot 58) .
$$

Substituting the first of these values into our original matrix equation gives us

$$
\left[\begin{array}{cc}
865-522 & -147 \\
-147 & 585-522
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=0
$$

but the matrix factors as

$$
\left[\begin{array}{cc}
343 & -147 \\
-147 & 63
\end{array}\right]=\left[\begin{array}{cc}
7 \cdot 49 & -3 \cdot 49 \\
-7 \cdot 21 & 3 \cdot 21
\end{array}\right]
$$

and thus kills the vector $(3,7)$ - as well as its normalized multiple

$$
\mathbf{x}_{+}=\frac{1}{\sqrt{ } 58}(3,7)
$$

Similarly: substituting in the second root yields the matrix

$$
\left[\begin{array}{cc}
865-928 & -147 \\
-147 & 585-928
\end{array}\right]=\left[\begin{array}{cc}
-63 & -147 \\
-147 & -343
\end{array}\right]
$$

which admits a similar factorization, and consequently kills the normalized vector

$$
\mathbf{x}_{-}=\frac{1}{\sqrt{ } 58}(-7,3)
$$

We can use these to answer the original question, about points on the curve $Q=$ 1450 at greatest and least distance from the origin, by noting that the function Q is quadratic, in the sense that for any real number t, we have

$$
Q(t x, t y)=t^{2} Q(x, y)
$$

The points on the locus $Q=1450$ where f is greatest are just multiples $t \mathbf{x}_{ \pm}$of the points on the unit circle where Q is greatest, by the argument above (about inverting λ); so all we need to do is find the right scaling factor t. It's not hard to calculate that

$$
Q\left(\mathbf{x}_{+}\right)=58 \cdot 9, Q\left(\mathbf{x}_{-}\right)=58 \cdot 16
$$

from which it follows easily that $\frac{5}{3} x_{+}$and $\frac{5}{4} x_{-}$lie on the locus $Q=1450=25 \cdot 58$: they are the extreme points we sought. Note by the way that these vectors (like \mathbf{x}_{+}and \mathbf{x}_{-}) are perpendicular: their dot product is

$$
\frac{25}{12 \cdot 58}(3 \cdot(-7)+7 \cdot 3)=0
$$

In other words: the locus $Q=1450$ is an ellipse, with the first vector above as the semimajor, and the second vector the semiminor, axes. It can be obtained from the standard ellipse

$$
9 X^{2}+16 Y^{2}=25
$$

by applying the rotation matrix

$$
\left[\mathbf{x}_{+} \mathbf{x}_{-}\right]:=\frac{1}{\sqrt{ } 58}\left[\begin{array}{cc}
3 & -7 \\
7 & 3
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]:=R(\theta)
$$

through the angle satisying $\tan \theta=\sin \theta / \cos \theta=7 / 3$. [Note that

$$
R(\theta) \cdot \mathbf{e}_{1}=\mathbf{x}_{+}, R(\theta) \cdot \mathbf{e}_{2}=\mathbf{x}_{-},
$$

where $\mathbf{e}_{1}=(1,0), \mathbf{e}_{2}=(0,1)$ are the standard unit vectors.] In fact

$$
Q(x, y)=9(3 x+7 y)^{2}+16(-7 x+3 y)^{2}
$$

writing this out gives

$$
9\left(9 x^{2}+42 x y+49 y^{2}\right)+16\left(49 x^{2}-42 x y+9 y^{2}\right)
$$

which equals

$$
[9 \cdot 9+16 \cdot 49=865] x^{2}+[42 \cdot(9-16)=-294] x y+[9 \cdot 49+16 \cdot 9=585] y^{2}
$$

2 For clarity, here is another example, this time with smaller numbers:
Problem: Find the principal axes (ie the semimajor and semiminor axes) for the ellipse $Q(x, y)=23 x^{2}+14 x y+23 y^{2}=17$.

Solution: We need to find the eigenvectors of the matrix

$$
\left[\begin{array}{cc}
23 & 7 \\
7 & 23
\end{array}\right]=B ;
$$

these are the (nontrivial) vectors $\mathbf{v}_{ \pm}$satisfying the eigenvalue equation $(B+$ $\left.\lambda_{ \pm}\right) \mathbf{v}_{ \pm}=0$. [Eigen comes from German, where it signifies something like 'proper' or 'characteristic'. It has become standard in mathematics (and in quantum mechanics) in this and related contexts.] Thus we need to solve the quadratic equation

$$
\operatorname{det}\left[\begin{array}{cc}
23+\lambda & 7 \\
7 & 23+\lambda
\end{array}\right]=(23+\lambda)^{2}-7^{2}=\lambda^{2}+46 \lambda+[529-49=480]=0
$$

This has solutions

$$
\lambda_{ \pm}=\frac{1}{2}\left[-46 \pm \sqrt{ }\left(46^{2}-4 \cdot 480\right)\right]
$$

but the term under the square root sign equals $2116-1920=196=13^{2}$, so $\lambda_{+}=-16$ and $\lambda_{-}=-30$. It follows that

$$
B+\lambda_{+}=\left[\begin{array}{cc}
23-16 & 7 \\
7 & 23-16
\end{array}\right]=\left[\begin{array}{cc}
7 & 7 \\
7 & 7
\end{array}\right]
$$

which kills the normalized vector $\mathbf{v}_{+}=\frac{1}{\sqrt{ } 2}(1,-1)$, while

$$
B+\lambda_{-}=\left[\begin{array}{cc}
23-30 & 7 \\
7 & 23-30
\end{array}\right]=\left[\begin{array}{cc}
-7 & 7 \\
7 & -7
\end{array}\right]
$$

kills the vector $\mathbf{v}_{-}=\frac{1}{\sqrt{ } 2}(1,1)$. In this case the rotation matrix is

$$
R(\phi)=\frac{1}{\sqrt{ } 2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

defined by a 45 -degree rotation (since $\tan \phi=1$), and the original equation can be rewritten as

$$
\lambda_{+}\left(\mathbf{v}_{+} \cdot \mathbf{x}\right)^{2}+\lambda_{-}\left(\mathbf{v}_{-} \cdot \mathbf{x}\right)^{2}=8(x-y)^{2}+15(x+y)^{2} .
$$

In general the normalized eigenvectors satisfy $Q\left(\mathbf{v}_{ \pm}\right)=-\lambda_{ \pm}$, so by rescaling (as in the previous problem) we find that the principal axes of the ellipse $Q=17$ are defined by the vectors

$$
\frac{\sqrt{ } 34}{8}(1,1) \text { and } \frac{\sqrt{ } 1120}{60}(1,-1) .
$$

3 In general, the n-dimensional Lagrange multiplier problem for a quadratic function

$$
\mathbf{x} \mapsto(A \mathbf{x}) \cdot \mathbf{x}: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

defined by a symmetric $n \times n$ matrix A will have n nontrivial (normalized, mutually orthogonal) eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ satisfying the eigenvalue equation $A \mathbf{v}_{k}=\lambda_{k} \mathbf{v}_{k}$, and the formula above generalizes to

$$
Q(\mathbf{x})=\sum_{k=1}^{k=n} \lambda_{k}\left(\mathbf{v}_{k} \cdot \mathbf{x}\right)^{2}
$$

Astronomers use this, for example, to study elliptical galaxies (which, being threedimensional objects, have three principal axes).

I don't want to give the (false) impression, that the quadratic equations for such problems always work out so neatly; they don't. The problems above were cooked up using the equation

$$
A(a x+b y)^{2}+B(-b x+a y)^{2}=E x^{2}+2 F x y+G y^{2},
$$

where

$$
E=a^{2} A+b^{2} B, F=a b(A-B), \text { and } G=b^{2} A+a^{2} B ;
$$

for example in problem $1, A=9, B=16, a=3$, and $b=7$. If you chase through the quadratic formula in this generality, you find that for problems of this sort,

$$
\lambda_{ \pm}=-\left(a^{2}+b^{2}\right)\{A \text { or } B\}
$$

4 The condition that the matrix A be symmetric is important. The symmetry condition [that the coefficient $A_{i k}$ of the matrix equals the coefficient $A_{k i}$, with the order of indices reversed] implies that for any two vectors \mathbf{v} and \mathbf{v}^{\prime}, we have

$$
\left(A \mathbf{v}^{\prime}\right) \cdot \mathbf{v}=\sum_{i, k=1}^{i, k=n} A_{i k} v_{k}^{\prime} v_{i}=\sum_{i, k=1}^{i, k=n} A_{k i} v_{i} v_{k}^{\prime}=(A \mathbf{v}) \cdot \mathbf{v}^{\prime}
$$

But now if \mathbf{v} and \mathbf{v}^{\prime} are eigenvectors of a symmetric matrix A, with associated eigenvalues λ and λ^{\prime} which are distinct, ie $\lambda \neq \lambda^{\prime}$, then \mathbf{v} and \mathbf{v}^{\prime} must be orthogonal: for

$$
A \mathbf{v}=\lambda \mathbf{v}, A \mathbf{v}^{\prime}=\lambda^{\prime} \mathbf{v}^{\prime}
$$

so on one hand

$$
\left(A \mathbf{v}^{\prime}\right) \cdot \mathbf{v}=\left(\lambda^{\prime} \mathbf{v}^{\prime}\right) \cdot \mathbf{v}=\lambda^{\prime} \mathbf{v}^{\prime} \cdot \mathbf{v}
$$

while on the other hand, the symmetry of A implies that

$$
\left(A \mathbf{v}^{\prime}\right) \cdot \mathbf{v}=(A \mathbf{v}) \cdot \mathbf{v}^{\prime}=(\lambda \mathbf{v}) \cdot \mathbf{v}^{\prime}=\lambda \mathbf{v} \cdot \mathbf{v}^{\prime} .
$$

Thus these two quantities are equal, ie

$$
\lambda^{\prime} \mathbf{v}^{\prime} \cdot \mathbf{v}=\lambda \mathbf{v} \cdot \mathbf{v}^{\prime} ;
$$

but the dot product itself is symmetric $\left[\mathbf{v}^{\prime} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{v}^{\prime}\right]$ so

$$
\left(\lambda^{\prime}-\lambda\right) \mathbf{v}^{\prime} \cdot \mathbf{v}=0
$$

But λ and λ^{\prime} are distinct, so their difference is nonzero, and we conclude that $\mathbf{v}^{\prime} \cdot \mathbf{v}=0-$ which is to say that the eigenvectors \mathbf{v} and \mathbf{v}^{\prime} are perpendicular.

This has applications in quantum mechanics: in that theory observable physical quantities are supposed to be represented by (things very much like) symmetric matrices, and the result of a measurement of the physical quantity in question is
thought to be an eigenvalue of that matrix. A state of the physical system is interpreted as a vector, and to say that a measurement of a physical quantity A in the state \mathbf{v} yields the result λ is interpreted as saying that the state \mathbf{v} is an eigenvector of A, with eigenvalue λ : in other words,

$$
A \mathbf{v}=\lambda \mathbf{v} .
$$

The fact that eigenvectors corresponding to distinct eigenvalues are orthogonal is a kind of quantum-mechanical analog of the law of the excluded middle in logic: there is a certain amount of indeterminacy in quantum mechanics - an experiment might yield λ for a measurement, or it might yield λ^{\prime} - but it can't yield both: the experiment yields a 'pure' state, in which the value of the measured quantity is well-defined.

This is a difficult and important notion, which lies at the heart of quantum mechanics, and it's really because I thought you might be interested in this, rather than because of the considerable intrinsic mathematical beauty of the theory of principal axes, that I have written up these notes.

