1 Calculate the length of the curve $\mathbf{c}: \mathbb{R} \rightarrow \mathbb{R}^{2}$ defined by the function

$$
\mathbf{c}(t)=\left(\cos ^{3} t, \sin ^{3} t\right)
$$

as t varies between $t=0$ and $t=\frac{1}{2} \pi$.
solution The velocity vector is

$$
\mathbf{c}^{\prime}(t)=\left(-3 \cos ^{2} t \sin t, 3 \sin ^{2} t \cos t\right)
$$

which has magnitude (also known as speed)

$$
\left|c^{\prime}(t)\right|=\left[9 \cos ^{4} t \sin ^{2} t+9 \sin ^{4} t \cos ^{2} t\right]^{1 / 2}=3|\sin t \cos t|\left[\cos ^{2} t+\sin ^{2} t\right]^{1 / 2}
$$

using the double-angle formula for the sine, we can rewrite this as

$$
\left|c^{\prime}(t)\right|=\frac{3}{2}|\sin 2 t|
$$

The sine is positive in the interval between 0 and π, so we can drop the absolutevalue bars and write the arc-length formula as

$$
\int_{0}^{\pi / 2}\left|c^{\prime}(t)\right| d t=\frac{3}{2} \int_{0}^{\pi / 2} \sin 2 t d t=-\left.\frac{3}{4} \cos 2 t\right|_{0} ^{\pi / 2}
$$

this can be evaluated as

$$
-\frac{3}{4}[\cos \pi-\cos 0]=-\frac{3}{4}[(-1)-1]=\frac{\mathbf{3}}{\mathbf{2}} .
$$

2 The curve $\mathbf{a}(t)=\left(t, t^{2}, t^{3}\right)$ crosses the plane $4 x+2 y+z=24$ at a single point. Find that point, and then calculate the cosine of the angle between the the tangent vector to a at that point, and the normal vector to the plane.
solution: To find the point where the curve crosses the plane, we must find t such that $x=t, y=t^{2}, z=t^{3}$ lies on the plane: in other words, we must solve the cubic equation

$$
4 t+2 t^{2}+t^{3}=24
$$

Normally cubic equations are hard to solve, but in this case trial and error ($t=0$? absurd. $t=1$? too small. $t=2$? Just right: $4 \cdot 2+2 \cdot 2^{2}+2^{3}=3 \cdot 8=24$!) does the trick.

So the tangent direction to $\mathbf{a}(t)$ at $t=2$ is $\mathbf{a}^{\prime}(t)=\left(1,2 t, 3 t^{2}\right) \mapsto(1,4,12)$. On the other hand, the normal direction to the plane is $(4,2,1)$, so the cosine of the angle between these vectors is given by the ratio

$$
\frac{(4,2,1) \cdot(1,4,12)}{\left[\left(4^{2}+2^{2}+1^{2}\right) \cdot\left(1^{2}+4^{2}+12^{2}\right)\right]^{1 / 2}}
$$

which equals

$$
\frac{(4+8+12)}{(21 \cdot 161)^{1 / 2}}=\frac{24}{7 \sqrt{ } 69}=\frac{\mathbf{8}}{\mathbf{1 6 1}} \sqrt{ } \mathbf{6 9}
$$

3 Calculate the derivative of the function

$$
F(t)=f(x(t), y(t), z(t))
$$

defined by the path

$$
t \mapsto(x, y, z)=\left(t, t^{2}, t^{3}\right)
$$

and the function

$$
f(x, y, z)=x^{2} y+z \cos x
$$

first directly, and then by using the chain rule.
solution: Substituting in the equations for the path, we get

$$
F(t)=t^{2} \cdot t^{2}+t^{3} \cos t=t^{4}+t^{3} \cos t
$$

differentiating this yields

$$
F^{\prime}(t)=4 t^{3}+3 t^{2} \cos t-t^{3} \sin t
$$

On the other hand, the gradient of f is

$$
\nabla f(x, y, z)=\left(2 x y-z \sin x, x^{2}, \cos x\right),
$$

while $\left(x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right)=\left(1,2 t, 3 t^{2}\right)$. But the chain rule says

$$
F^{\prime}(t)=\nabla f(x(t), y(t), z(t)) \cdot\left(1,2 t, 3 t^{2}\right)=\left(2 t^{3}-t^{3} \sin t, t^{2}, \cos t\right) \cdot\left(1,2 t, 3 t^{2}\right)
$$

which equals

$$
2 t^{3}-t^{3} \sin t+2 t \cdot t^{2}+3 t^{2} \cos t=4 t^{3}-t^{3} \sin t+3 t^{2} \cos t
$$

in agreement with the previous calculation.
4 Find the points on the surface

$$
S=\left\{(x, y, z) \mid z=g(x, y)=x^{2} y^{2}+y+1\right\}
$$

where the tangent plane is parallel to the plane

$$
-2 x-3 y+z=1 .
$$

solution S is the level surface

$$
0=G(x, y, z)=z-g(x, y)=z-x^{2} y^{2}-y-1
$$

so the tangent plane at (x, y, z) is perpendicular to the gradient

$$
\nabla G(x, y, z)=\left(-2 x y^{2},-2 x^{2} y-1,1\right)
$$

of the defining function F. To find points where the tangent plane is parallel to the plane $-2 x-3 y+z=1$ is thus the same as finding points where the gradient vector is parallel to the normal vector $(-2,-3,1)$ of that surface; thus we need to solve the equations

$$
-2 x y^{2}=-2,-2 x^{2} y-1=-3
$$

We can rewrite these equations as $x y^{2}=1, x^{2} y=1$; from which it follows that neither x nor y can vanish, so we can divide one into the other to conclude that $x=y$. But then we must have $x^{3}=y^{3}=1$, and we can factor the equation $x^{3}-1$ as

$$
x^{3}-1=(x-1)\left(x^{2}+x+1\right)=0,
$$

so it follows that either $x=1$ (and hence $y=1$) and $z=3$ or that

$$
x=\frac{1}{2}(1 \pm \sqrt{ }(-3)),
$$

which is a complex number, not relevant to our problem.

