PRACTICE PROBLEMS FOR MIDTERM 2

1. INTEGRALS

1.1. Compute the volume of the sphere of radius R by computing the integral $\int \int_{D(O,R)} \sqrt{1-x^2-y^2} dx dy$ using polar coordinates. Here D(0,R) is the disk $x^2 + y^2 \leq R^2$.

1.2. Compute the integral $\int \int_D \frac{dxdy}{\sqrt{x^2+y^2}}$ where *D* is the domain in \mathbb{R}^2 bounded enclosed by the parabola $y = x^2$ and the line y = x.

Hint: use polar coordinates to parametrize the domain D by $x = r \cos \theta$, $y = r \sin \theta$, with $0 \le \theta \le \frac{\pi}{4}$ and $0 \le r \le \frac{\sin \theta}{\cos^2 \theta}$.

1.3. Compute $\int \int_D x^2 y \, dx \, dy$ where D is the domain in \mathbb{R}^2 bounded by the lines y = 0, y = 1 - x and y = x + 1.

1.4. Compute $\int \int_D xy^2 \sqrt{x^2 + y^2} \, dx \, dy$ where *D* is the region of the disk $x^2 + y^2 \leq 1$ where $x \geq 0$ and $y \leq 0$.

1.5. [Ex. 10, p. 327] Find the volume bounded by the graph of f(x, y) = 1+2x+3y, the rectangle $[1,2] \times [0,1]$ and the four vertical planes bounding the rectangle.

1.6. $\int \int_{[-1,1]\times[0,1]} (x^2 + y^2) dx dy.$

1.7. Determine the volume of the region in \mathbb{R}^3 bounded by the paraboloid $z = 4 - x^2 - y^2$ and the *xy*-plane.

1.8. Calculate the volume bounded above by the graph $z = 1 - x^3 - y^3$ and below and on the sides by the coordinate planes x = 0, y = 0, z = 0.