PRACTICE PROBLEMS FOR MIDTERM 2

1. Integrals

1.1. Compute the volume of the sphere of radius R by computing the integral $\iint_{D(O, R)} \sqrt{1-x^{2}-y^{2}} d x d y$ using polar coordinates.
Here $D(0, R)$ is the disk $x^{2}+y^{2} \leq R^{2}$.
1.2. Compute the integral $\iint_{D} \frac{d x d y}{\sqrt{x^{2}+y^{2}}}$ where D is the domain in \mathbb{R}^{2} bounded enclosed by the parabola $y=x^{2}$ and the line $y=x$.
Hint: use polar coordinates to parametrize the domain D by $x=r \cos \theta, y=r \sin \theta$, with $0 \leq \theta \leq \frac{\pi}{4}$ and $0 \leq r \leq \frac{\sin \theta}{\cos ^{2} \theta}$.
1.3. Compute $\iint_{D} x^{2} y d x d y$ where D is the domain in \mathbb{R}^{2} bounded by the lines $y=0, y=1-x$ and $y=x+1$.
1.4. Compute $\iint_{D} x y^{2} \sqrt{x^{2}+y^{2}} d x d y$ where D is the region of the disk $x^{2}+y^{2} \leq 1$ where $x \geq 0$ and $y \leq 0$.
1.5. [Ex. 10, p. 327] Find the volume bounded by the graph of $f(x, y)=1+2 x+3 y$, the rectangle $[1,2] \times[0,1]$ and the four vertical planes bounding the rectangle.
1.6. $\iint_{[-1,1] \times[0,1]}\left(x^{2}+y^{2}\right) d x d y$.
1.7. Determine the volume of the region in \mathbb{R}^{3} bounded by the paraboloid $z=$ $4-x^{2}-y^{2}$ and the $x y$-plane.
1.8. Calculate the volume bounded above by the graph $z=1-x^{3}-y^{3}$ and below and on the sides by the coordinate planes $x=0, y=0, z=0$.

