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1. (10 points) Show that for n > 3, the order |Aut(Z/nZ)| of the group of automorphisms of Z/nZ is even.

Solution: It is a well-known fact that the order of Aut(Z/nZ) is equal to [(Z/nZ)*| = p(n) (Eu-
ler’s phi-function). Since n > 3, —1 # 1 in Z/nZ, hence —1 has order 2 in (Z/nZ)*. It follows that 2

divides [(Z/nZ)*| = p(n).



2. (20 points) Show that if the center of a group G (not necessarily finite) is of index n in G, then every
conjugacy class O4 = [g] of G (g € G) has at most n elements.

Solution: For a given g € G, the cardinality of the conjugacy class of g coincides with the index
of the centralizer Cg(g): |O4] = |G : Cg(g)|. Since the center of a group Z(G) is contained in the
centralizer of any element of the group, then n = |G : Z(G)| = |G : Ca(g)] - |Ca(g) : Z(G)| from which
the result follows.



3. (20 points) Compute Hom(Dsg, Z/87). Explicitly state what group this is isomorphic to.

Solution: In a group homomorphism ¢ : G — G, the order (period) of ¢(g) € G1 must divide the
order of g (and the order of G7). It is enough to define ¢ € Hom(Ds,Z/8Z) on the generators r
(r* =1) and s (s = 1) of Dg. It follows that o(r) = 0,2, 4,6 and that (s) = 0,4. Also, the relation
rs = sr~! has to be satisfied which implies that ¢(rs) = ¢(sr~1). This in turns produces the condition
o(r) + ¢(s) = o(s) — ¢(r), i.e. 2¢p(r) = 0. So r can not be mapped to 2 or 6. It follows that both r
and s need to be mapped to either 0 or 4. This is a group of order 4 with every element having order
at most 2, so Hom(Ds, Z/8Z) ~ Z/2Z x Z/2Z.



4. (20 points) Let Z(G) be the center of a group G.

(a) (10 points) Define the set Z(G), show that Z(G) is a subgroup of G and in particular show that
Z(@) is a normal subgroup of G.

Solution: The center is the set of elements which commute with every element of G. The center
is a subgroup by direct application of the Subgroup Criterion, and since action by conjugation is
trivial with every element in the center, clearly Z(G) < G.

(b) (10 points) Assume that G is a finite non-abelian group. Show that |Z(G)| < §|G|.

Solution: By rearranging, this inequality is 4 < |G|/|Z(G)| = |G/Z(G)| since G is finite. Since
G is non-abelian, |G/Z(G)| can not have prime order, else the quotient group would be cyclic and
G would be abelian, so |G/Z(G)| > 4 as desired.



5. (30 points) (ANSWER THIS QUESTION OR NUMBER 6)

Recall that GL,(F,) denotes the general linear group of invertible n x n matrices (n € N) with
entries in the finite field Fy, where and ¢ = p™ for some prime p.

(a)

(10 points) Show that the order of GL, (F,) is (¢" —1)(¢" — q)(¢" — ¢*) ... (¢" —¢" ")

Solution: We will use the fact from linear algebra that the determinant is nonzero if the columns
are linearly independent. Pick a nonzero-vector wy, of which there are ¢ — 1 choices. Any vector
not in the span of this vector can be chosen for the second column. A 1 dimensional space is
isomorphic to Iy, so there are ¢" — ¢ choices for wy. Continuing this way we have ¢" — ¢! for
w;j.

(10 points) Let F be a field. Consider the special linear group SL,(F) ={A € GL,(F)|det(A) =
1}. Prove that SL,(F) < GL,(F). (Note: you have to show it’s a subgroup first, and then show
it is normal!)

Solution: The fact that SL,,(F) is a subgroup follows immediately from the Subgroup Criterion.
It is normal since it is the kernel of the determinant homomorphism det : GL, (F) — F*

(10 points) Find an expression for the order of SL,,(F,) in terms of the order of GL,,(F,).

Solution: Using the first isomorphism theorem on the homomorphism above, which is clearly
surjective, we get that |SL, (F,)| = |GL.(F,)|/[F;| = |GL.(Fy)|/(qg — 1).



6. (30 points) (ANSWER THIS QUESTION OR NUMBER 5)

Let G be a finite group of order pgr, where p, ¢ and r are distinct primes with 2 < p < ¢ < r.
Prove that G has a normal Sylow subgroup for either p,q or r.

Solution: Apply Sylow’s theorem. Assume ng # 1,1, # 1,n, # 1.

By Sylow’s theorem, n, = 1 mod r and n.|pq. So n, = p,q or pq. Since p < ¢ < r, p Z 1 mod r and
q # 1 mod r, so n, = pq.

Similarly, ng|pr, and n; =1 mod ¢. Since p < ¢,nq = pr or r. Therefore ny > r

Lastly, n,|qr, so n, = q,r, or ¢r, so n, > q.

Counting elements: |G| =14+ (r—1)pg+ (¢—1)ng+@—1)n, 21+ (r—Dpg+ (¢—1)r+ (p—1)g
= (pgr) + (¢ = 1)(r — 1) > pgr = |G]|.

Contradiction, so some Sylow number is 1 and G has a normal Sylow subgroup.



