Problem Set 2

From "Dummit & Foote"

- 1. nn. 4, 5 p. 35; n. 3 p. 36
- 2. nn. 2, 7, 11, 14, 17, 25 p. 40-41
- 3. nn. 6,7,8,10 p. 49
- 4. nn. 6,10 p. 53

Further exercises

- 5. 1. Show that any group G of order 2,3,5 is cyclic (i.e. $\exists g \in G \text{ s.t. } G = \{g^n \mid n \in \mathbb{Z}\}\)$.
- 6. Let G and G' be two groups, $g \in G$ and $g' \in G'$. Show that |(g,g')| = l.c.m.(|g|,|g'|), where $(g,g') \in G \times G'$. Assume now that the 2 groups are cyclic, let $|G| = n < \infty$ and $|G'| = m < \infty$. Determine a necessary and sufficient condition on the orders so that $G \times G'$ is cyclic.
 - 7. Is the map:

$$\psi: \mathbb{Z}/6\mathbb{Z} \to \mathbb{Z}/8\mathbb{Z}, \qquad \psi(\overline{a}) = [a]$$

a homomorphism of groups? If not, define a homomorphism between these 2 groups. How many homomorphisms can one define between these 2 groups? Explain.