1. p. 95–96

48. Let \(|G| = pq \) for primes \(p \) and \(q \).

By Lagrange, \(|Z(G)| = 1, p, q, \) or \(pq \).

\[\frac{|G|}{|Z(G)|} = \frac{16}{1} = \frac{16}{16} = \frac{p^4}{p} = \frac{q^2}{q} = q \text{ or } p \]

:. by cor. 10 p. 90, \(Z(G) \) is cyclic.

:. by group law, \(G \) is a kubian.

\[|(Z(G))| = pq, \quad G = Z(G) \text{ so } G \text{ abelian.} \]

49. Let \(H < G, \ g \in G \). Let left coset \(gH = Hg \) for some \(g \in G \). Want to show \(gH = Hg \).

\[\text{Since cosets partition } G, \ gH = gH^{g} \text{ iff } gH \cap Hg \neq \emptyset \]

but \(gH = Hg \), and clearly \(g \in Hg \) and \(g \in H \).

\[\text{Since } Hg = gH, \ ie \ H = gH^{-1}, \ g \in \ker(H). \]

50. Let \(H, K \) finite subgroups of \(G \), with \(|H|=n, \ |K|=n, \) and \((m,n) = 1 \).

\[\text{Let } \sigma \in HnK. \ \text{Then by Lagrange, } |\sigma| |H|, \ |\sigma| |K| : |\sigma| = (m,n)=1 : |\sigma|=1 : \sigma=1 \]

51. \(\text{Let } |G:H| = m, \ |G:K| = n. \)

\[\text{Then } |G:H| |K| = m \cdot n, \text{ and } |G:H| |K| = |G:HnK| \text{ by remaining together for } HnK. \]

\[\therefore |G:HnK| = m \text{ as well } |G:H| \leq m \cdot n \]

\[\text{Since } m | \lceil G: |HnK| \rceil, \ n | \lceil G: |HnK| \rceil, \ \text{clearly } \lceil G: |HnK| \rceil = |G:HnK|, \text{ so } \text{lcm}(m,n) = |G:HnK| \]

if \(\gcd(m,n) = 1 \), then \(\text{lcm}(m,n) = mn \), so result follows.

(\text{Note: here I used } 2^\text{nd} \text{ inv thm and result from } #41 \text{ on same pg})

52. \(|H| = |G| = |H|^{-1}, \) and \(\phi : \mathbb{R}^+ \to \mathbb{R}^+ \) is a bijection as shown in previous pg.
2. p. 101 #21

Let \(p \) prime, \(G \) group of \(p \)-th power roots of 1 in \(C \), i.e. \(G = \{ z \in C \mid z^p = 1 \} \).

Let \(\phi : G \to G \) defined by \(z \to z^p \).

\(\phi \) is a homomorphism since \(\phi(xy) = (xy)^p = x^p y^p = \phi(x) \phi(y) \).

\(\phi \) surjective since for any \(z \in G \), \(\phi(z^{p^{-1}}) = (z^{p^{-1}})^p = z^p = 1 \).

\(\ker \phi \neq 1 \) since any \(z^{-p^{-1}} \to z^p = 1 \), so \(\ker \phi \) proper subgroup.

By 1st Iso Thm: \(\frac{G}{\ker \phi} \cong \phi[G] = G \).

#21 Let \(p \) prime, \(|G| = p^m \) for \(p \) a prime factor of \(n \). Let \(|G| = p^m \), \(N \leq G \), \(|N| = p^k \), \(p \nmid k \).

Then \(PN \leq G \), \(|PN| = \frac{|P| \cdot |N|}{\gcd(|P|, |N|)} \).

\(\gcd(|P|, |N|) = 1 \) \(\implies \frac{|P| \cdot |N|}{\gcd(|P|, |N|)} = |P| \cdot |N| \).

If \(N \neq P \), \(a = b \) and result clearly follows.

If \(N \neq P \), \(a \neq b \).

Since \(N \leq G \), \(a \neq b \) and all powers of \(b \) in \(\text{PN} \).

\(\implies |\text{PN}| = p^k \).

By 2nd Iso Thm, \(|\text{PN}| = |P| \cdot |N| = |P| \cdot |\text{PN}| = |P| \cdot |P| = p^k = p^k = p^k \).

2. Let \(H, K \leq G \), \(16 : H \leq p \), \(16 : K \leq p \), \(H \cap K = 1 \).

By Cor 15, \(HK \leq G \), so by 2nd Iso Thm, \(|HK| = |P| \cdot |HK| = |HK| = |H| \cdot |K| = 1 \).

By Lagrange, \(|HK| = 16 \), so since \(16 = 16 : H \leq HK \), \(|H| = p \), \(|G : HK| = 1 \).

\(\implies G = HK \).

By similar reasoning, \(|H| = 16 : K \leq p \), \(|G : HK| = p^2 \)

\(\implies G = HK \).

Since \(H = C_p \), \(K = C_p \), hence \(HK = C_p \times C_p \). Since \(H \leq G \), \(K \leq G \), and \(H \cap K = 1 \), no element has order \(p^2 \) in \(G \).

Easy to see \(G \) as \(Z_p \times Z_p \).

4. Let \(H = \langle g \rangle \) which is abelian since each element pairwise commute.

Since every conjugacy class contains \(H \) non-trivially, \(G = U g H g^{-1} \).

By result of 35 (not proven), \(H \) cannot be proper, so \(G = H \) which is abelian.
5. Let H proper subgroup of finite group G, $|G| = n$, $|H| = m$

 If $H < G$, $gHg^{-1} = H$, so clearly $G \neq U gHg^{-1}$

 If $H \nsubseteq G$, put H in some maximal subgroup M not normal in G

 $N_G(M) = M$, so number of nonidentity elements of G contained in conjugates of $M \leq (|M|-1)|G:M|$

 $U gHg^{-1} \leq U gHg^{-1} \leq (|M|-1)|G:M| < |M||G:M| = |G|$