Problem Set 7

From "Dummit & Foote"

1. nn. 2, 5, 11, 12, 18, p. 137-138

Further exercises

- 2. A Boolean ring is a ring with (multiplicative) unit, whose elements are idempotent *i.e.* $x^2 = x$. Show then that in any such a ring R an element $x \in R$ verifies the identity x + x = 0 and that the ring is commutative.
- 3. Let A be a ring with unit and let $a \in A$ be a nilpotent element i.e. $a^n = 0$ for some $n \in \mathbb{N}$. Show that if $x \in A$ is a unit and commutes with a, then x a is also a unit and determine its inverse.
 - 4. What is the smallest sub-ring of \mathbb{Q} containing 1/5?
 - 5. Show that a finite integral ring (i.e. a finite domain) is a field.
- 6. Let $\mathbb{Z}[\sqrt{2}]$ be the subset of \mathbb{R} defined by the real numbers $a + b\sqrt{2}$, with $a, b \in \mathbb{Z}$. Show that $\mathbb{Z}[\sqrt{2}]$ is a sub-ring of \mathbb{R} .
 - 7. Determine the units in $M_2(\mathbb{Z})$: the set of 2×2 matrices with coefficients in \mathbb{Z} .
- 8. Let $A = C([0, 1], \mathbb{R})$ be the ring of continuous functions $f : [0, 1] \to \mathbb{R}$. Let I be the subset of A of those functions such that f(1/2) = 0. Show that I is a prime ideal of A. Is it also a maximal ideal?
- 9. Determine all the proper ideals of the ring $A = \mathbb{Z}/(180)\mathbb{Z}$. Determine the prime ideals and the maximal ideals of A.