On the notion of equivalence relation

Let \sim be an equivalence relation on a set S. For any $x \in S$ we group together all the elements equivalent to x into an equivalence class

$$S_x = \{ y \in S \mid x \sim y \}.$$

By the reflexivity, $x \in S_x$.

<u>Claim</u> Any two equivalence classes S_x , S_y are either disjoint or coincide.

<u>proof</u> Suppose $S_x \cap S_y \neq \emptyset$, then we must prove that $S_x = S_y$ and we begin by showing that $x \sim y$. Since $S_x \cap S_y \neq \emptyset$, there exists $z \in S_x \cap S_y$; by definition this means that $x \sim z$ and $y \sim z$. By symmetry then, $z \sim y$ and hence by transitivity $x \sim y$. Now let $u \in S_y$; then $y \sim u$, hence $x \sim u$ (by transitivity) and so $u \in S_x$; this proves that $S_y \subseteq S_x$. A similar argument shows that $S_x \subseteq S_y$.

The different S_x provide a partition of S into non-empty subsets, any two of which are disjoint. This is called a partition of S

$$S = \coprod_{x \in S} S_x.$$

Given an equivalence relation \sim on a set S, we can form a new set S/\sim , whose elements are the different (sub)sets S_x

$$S/\sim=\{S_x\mid x\in S\}$$

Then we have a natural map

$$\varphi: S \to S/\sim, \quad \varphi(x) = S_x.$$

 φ is surjective but not injective unless the equivalence on S was just equality. S/\sim is called a quotient set.

Conversely, every partition on a set S arises in this way from an equivalence. For, suppose that S is partitioned into sets A, B,... Then each $x \in S$ belongs just to one set of the partition, say $x \in A$. We put $x \sim y$ if x and y lie in the same set. This defines an equivalence on S with blocks A, B,...