On the notion of signature of a permutation

Let S_{n} be the symmetric group associated to the bijections of the set $M=\{1,2, \ldots, n\}$.
A transposition is a 2-cycle $c \in S_{n}$. It is known that transpositions generate S_{n}. Equivalently stated, every permutation can be written as a product of transpositions. Notice though, that unlike the decomposition of σ into disjoint cycles, the decomposition of a permutation as a product of transpositions is not unique! However, the parity of the number of transpositions which appear in any such a decomposition is independent of the chosen decomposition.

Let s be the number of transpositions which appear in a decomposition of $\sigma \in S_{n}$.
Definition The signature of σ is

$$
\operatorname{sgn}(\sigma)=(-1)^{s}
$$

There is an equivalent way to state the definition of the signature of a permutation σ by considering the canonical decomposition of σ into disjoint cycles. Let assume that the decomposition of σ into disjoint cycles is given by $\sigma=c_{1} \cdots c_{r}$.

Definition 1 The signature of a r-cycle $c \in S_{n}$ is

$$
\operatorname{sgn}(c)= \begin{cases}-1 & \text { if } r \text { is odd } \\ 1 & \text { if } r \text { is even }\end{cases}
$$

Consequently we set
Definition 2 The signature of the permutation $\sigma=c_{1} \cdots c_{r}$ is

$$
\operatorname{sgn}(\sigma)=\prod_{i=1}^{r} \operatorname{sgn}\left(c_{i}\right)
$$

This is the definition of signature of a permutation I gave in class $(09 / 24 / 2008)$.
Example Let $\sigma=\left(\begin{array}{llllllll}1 & 3 & 5\end{array}\right)\left(\begin{array}{lllll}5 & 4 & 3 & 2\end{array}\right)\left(\begin{array}{lllllll}5 & 6 & 7 & 8\end{array}\right) \in S_{8}$. Then, $\sigma=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 2 & 5 & 6 & 7 & 8 & 4\end{array}\right)$. The above decomposition of σ is not the canonical one, as the cycles appearing in the decomposition are not disjoint. We then proceed by decomposing first σ into a product of disjoint cycles, following the well-known algorithm

$$
\sigma=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)\left(\begin{array}{ll}
4 & 5 \\
6
\end{array} 78\right) .
$$

Then by applying Definition 2 we get $\operatorname{sgn}(\sigma)=(-1)(-1)=1$.
Alternatively, we can find a decomposition of σ into 2-cycles and apply Definition 1 for the computation of the signature. For example, σ can be decomposed as a product of (not disjoint) 2-cycles as follows

$$
\sigma=(35)(51)(23)(42)(25)(78)(68)(58) .
$$

By applying Definition 1 we find again that $\operatorname{sgn}(\sigma)=(-1)^{8}=1$.

