No calculators allowed. Total Marks = 100

Student Name: __________________________

Ethic Stat.: I agree to complete this exam without unauthorized assistance from any person, materials or device.

Student Signature & date: __________________________

TA Name: __________________________

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
1. [25 marks] Let G/H be a p-group and let K be a Sylow p-subgroup of G.

Show that $G = HK$.

2. [25 marks] Give a proof or disprove the following statement:

\[\mathbb{Z}[\sqrt{-3}] \text{ is an Euclidean integral ring (i.e. an Euclidean domain).} \]
3. [25 marks] Consider the domain $R = \mathbb{Z}[\sqrt{3}] := \{a + b\sqrt{3} \mid a, b \in \mathbb{Z}\}$.

a) Which of the following elements of R are invertible

$5 + 3\sqrt{3}$, $2 - \sqrt{3}$, $1 + \sqrt{3}$, $7 + 4\sqrt{3}$?

b) Does the following equality of ideals hold in R

$(5 + 3\sqrt{3}) = (1 + \sqrt{3})$?

Explain why.

c) Is $(3 + \sqrt{3})$ a prime ideal in R? Explain.

d) Determine a maximal ideal $\mathfrak{m} \subset \mathbb{Z}[X]$ such that $X^2 - 3 \in \mathfrak{m}$.
4. [25 marks] Consider the ring \(R = \mathbb{Z}[X]/(X^4 + 3X^3 + 1) \).

a) Is \((\bar{2}) \subset R\) a maximal ideal in \(R \)? Explain.

b) Is \(R \) a domain? Is \(R \) a field? Explain.

[Hint. You may want to use the fact that if \(q(X) \) is an irreducible polynomial in \(R \), which is the image of a non-constant, monic polynomial \(p(X) \) in \(\mathbb{Z}[X] \), then \(p(X) \) is irreducible in \(\mathbb{Z}[X] \)]

c) Does \(R \) have any further unit besides \(\pm 1 \)? If yes, give an example of such unit.