Miscellaneous Exercices

1. Determine the ideals of the ring \(\mathbb{R}[X]/(X^3 - X) \). Which among them are primes, which are maximals? How many ideals \(\mathbb{Z}[X]/(X^3 - X) \) has?

2. Show that if \(f : A \rightarrow B \) is a homomorphism of rings and \(B \) is an integral domain, then \(\ker(f) \) is a prime ideal.

3. Show that \(\mathbb{Z}[\sqrt{-3}] \) is not Euclidean.

4. Show that \((2X^4 + X^2 - X + 1, 2X + 1) = (1)\) in \(\mathbb{Q}[X] \).

5. Is \(\mathbb{R}[X]/(X^2 + X + 1) \) a field? Determine, if exists, the inverse of \(X + 2 \).

6. Is \((2)\) a prime ideal in \(\mathbb{Z}_6[X] \)?

7. Consider the \(\mathbb{Z}\)-module (=abelian group) \(M = \mathbb{Z} \oplus \mathbb{Z} \). Is \(\{(1, 0), (0, 2), (0, 3)\} \) a basis of \(M \)? Why?

8. Is \(\mathbb{Q}[\sqrt{3}] \simeq \mathbb{Q}[X]/(X^5 - 3) \) as isomorphism of rings? Why?

9. Show that there are no fields \(K \) such that \(\mathbb{R} \subseteq K \subseteq \mathbb{C} \).

10. Is \(f : \mathbb{C} \rightarrow \mathbb{C}, f(z) = \bar{z} \) a homomorphism of \(\mathbb{C}\)-vector spaces? Is \(f \) a homomorphism of \(\mathbb{R}\)-vector spaces?

11. Determine the minimum polynomial of \(\sqrt{3} \) over \(\mathbb{Q}[\sqrt{3}] \).

12. Which among the following \(\mathbb{Q}\)-extensions are Galois: \(\mathbb{Q}(i\sqrt{3}), \mathbb{Q}(\sqrt{2} + \sqrt{3}), \mathbb{Q}(i, \sqrt{2}) \)?

13. Determine the Galois group of the extension \(\mathbb{Q}(\sqrt{5})/\mathbb{Q} \).

14. Determine the Galois correspondence for the extension of \(\mathbb{Q} \) associated to the polynomial \(f(X) = (X^2 - 2)(X^2 - 3) \in \mathbb{Q}[X] \). Namely, find the Galois group \(G \) of the splitting field \(K \) of \(f \) and determine the correspondence between subgroups of \(G \) and subfields of \(K \).

15. Let \(K \) be the splitting field of \(f(X) = X^3 + 2X + 1 \in \mathbb{Q}[X] \). Determine the Galois group \(\text{Gal}(K/\mathbb{Q}) \) and the complete Galois correspondence.

16. Let \(\zeta \) be a primitive 6-th root of unit. Determine \(\mathbb{Q}(\zeta) \) and the related Galois group.