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1. ABSTRACT

In this paper we study the expected density of non-real zeros of a system of real
random polynomials in several variables and critical points of a real random polynomial
in several variables. We use the Poincaré-Lelong formula to show that the expected
density of non-real zeros of random polynomial systems with real coefficients rapidly
approaches the expected density of non-real zeros in the complex coefficients case. We
use the Kac-Rice formula to prove the analogous result for critical points of a real random
polynomial in several variables.

2. INTRODUCTION

1. Expected density of zeros. Kac [Kac48] and Rice [Rich4] independently found the
expected density of zeros of a random polynomial with real standard Gaussian coeffi-
cients. Bogomolny, Bohigas, and Leboeuf ([BBL92|, [BBL96]) and Hannay [Han96] have
results on the density of (and correlations between) complex zeros of random polynomials
with complex Gaussian coefficients. Edelman and Kostlan [EK95] generalize the results
for density of real (resp. complex) zeros to systems of functions in several variables when
the coefficients are real (resp. complex) Gaussian random variables.

In one variable, Shepp and Vanderbei [SV95] and Prosen [Pro96] have studied non-real
zeros of real polynomials. Shepp and Vanderbei extended Kac’s formula for the expected
density of zeros of polynomials in one real variable, in the case where the coefficients are
standard real Gaussian coefficients, to include non-real zeros of those same polynomials.
Prosen followed Hannay’s approach to show that, as the degree of the polynomials goes
to infinity, the expected density of non-real zeros of a random polynomial with real
Gaussian coefficients approaches the expected density of non-real zeros of the random
polynomials with the corresponding complex Gaussian coefficients (i.e. those complex
coefficients with the same variance). Prosen’s motivation came from quantum chaos,
and he wanted the statistics of zeros of eigenstates of 1-dim chaotic systems.

In this paper we generalize Prosen’s result on the density of non-real zeros of real ran-
dom polynomials to random polynomial systems in several variables. Consider h,, y =
(fin, - fn) : €™ — C™, where f, v is a polynomial of the form

N 1/2
fan(z) = Z c (Jj> 27

|J|=0

where ¢% is a real or complex random variable with associated measure dvy for each g¢.
We show that for these m independent functions in m variables, the expected density of
non-real zeros in the real coefficients case rapidly approaches the expected density in the
complex coefficients case as the degree of the polynomials gets large. In fact, we show



that the convergence is exponential. More formally, let

1
AYew = —Ne’lc|2dc, ce CP¥ and
s

1
AYreal = (SRDN—N€_|C|2dC, ce CP~.
T

where Dy = (N:;m) and dgpy is the delta measure on RPN © CP~. Then we have the
following result.

Theorem 1.1. Let K C C™\R™ be compact, let X, be a positive constant. Then
E’Vreal(ZhN(Z)) = E’YCT(Z}LN(Z)) + O(e_)\ZN)’
for all z € C™\R™.

Here d~., corresponds to the standard complex Gaussian coefficients case, where we

are considering
N 1/2
N
ho) =3 ()

|J|=0

where the ¢%’s are standard complex Gaussian random variables, and d7,¢, corresponds
to the standard real Gaussian coefficients case, where we have

N A 172 N A 12
= () 2= a(f)

|J]=0 |J]=0
where c?] = ag + 140 is a standard real Gaussian random variable.

We prove this result using the Poincare-Lelong formula, which is similar to that which
was used in [BSZ00a], but has the added complication that the coefficients are real. The
proof uses 2-point Szego kernel asymptotics, which still applies to the polynomials with
real coefficients because we are viewing them as functions of complex variables.

Shiffman and Zelditch [SZ99] and Bleher, Shiffman and Zelditch ([BSZ00a], [BSZ00b)])
have generalized many results about random polynomials on C™ or R™ to complex
manifolds, and they have several results relating to the statistics of zeros of holomorphic
sections of powers of a line bundle over a complex manifold. In particular, in [BSZ00a]
the authors use the Poincare-Lelong formula to find a formula for density of zeros and
correlations between zeros.

2. Expected density of critical points. In [DSZ04], Douglas, Shiffman, and Zelditch
look at the critical points of a holomorphic section of a line bundles over a complex
manifold, motivated by applications in string theory. They use a generalized Kac-Rice
formula to find statistics of these critical points, namely the density of zeros and corre-
lations between zeros. In this paper, we also study critical points in the special case C™
and generalize the result in Theorem 1 for critical points in several variables. That is,
we prove the following:
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Theorem 2.2. Let K C C™\R™ be compact, let A, be a positive constant, and let h, e,
and Yreq be defined as above. We have

E’Y'V'eal<ChN(Z)) = E’Ycz (ChN(z)) + O(e—AZN)7

for all z € C™\R™.

The formula for £, (Ch, () is covered by [DSZ04]. Note that finding the critical
points of h is equivalent to finding the statistics of zeros of the m partial derivatives
of h. However, it is more difficult than the zeros case above in Theorem 1 because of
the fact that the m partial derivatives are not independent random functions. This fact
makes the Poincare-Lelong method much more difficult to apply. So we use the Kac-Rice
formula to get a strong limit to further generalize Theorem 1 to critical points in several
variables, and we also get an exact formula.

3. Current and Future work. The following is a list of current work and possibilities
for future work.

(1) Non-zero mean coefficients, and applications in engineering - Rice’s orig-
inal motivation for studying zeros random polynomials was zero crossings of noisy
signals [Ric54]. Schober and Gerstacker [SG02] discussed using results on random
polynomials for the purposes of filter design. It would be interesting to me to
use my background in electrical engineering to find other applications of random
polynomials in electrical engineering, and to let problems in that and other engi-
neering fields guide my future work. These problems would likely involve random
polynomials whose coefficients are non-zero mean random variables. While some
results are known for such polynomials in one variable, the case of polynomials in
two or more variables with non-zero mean coefficients has not been well-studied.

(2) Variance - One could consider variance of the number of zeros within a region.
Shiffman and Zelditch have done this in the complex manifolds case using asymp-
totics of Szego kernels (see [SZ06al, [SZ06b], [SZ0T7]). We have shown a result for
variance analogous to the results regarding average zeros above, namely that the
variance of the number of zeros in a subset U of C for a real random SO(2) poly-
nomial approaches that of the complex random SU(2) polynomial as the degree
of the polynomials goes to infinity.

(3) Higher moments and asymptotic normality - We also have shown an
analagous result for higher moments, and hope to be able to show that the
random variables (Z, ¢) where ¢ compactly supported test function, are asymp-
totically normal. The complex coefficients case is found in [ST04].

(4) Polynomials with coefficients of different variances or distributions -
Prosen’s result was for Gaussian coefficients of arbitrary variances. One could

generalize my results for arbitrary Gaussian coefficients or non-Guassian coeffi-
cients, e.g. [Mas75], [IZ97].

4. Outline. The paper is organized as follows:



e Section 3 - Density of zeros - One variable case .

e Section 4 - Density of critical points - One variable case .

e Section 5 - Density of zeros - Several variables case .

e Section 6 - Density of critical points - Several variables case.
e References



3. DENSITY OF ZEROS IN ONE VARIABLE

Consider the real random polynomial
N
f N (Z ) = dfze7
=0
where the a;’s are real independent Gaussian random variable with mean 0 and variance
(]Z ) Alternatively, one often writes

ne=ya(y)

=0
where a, is a standard real Gaussian random variable. Instead, we choose to think of

the random polynomial
N N /2
fN(Z):ZCg(€> 2,

=0
where ¢, is a more general complex random variable with associated measure dy. We
then consider two special cases

1
d’}/cz’ — _N€_|C|2d0, c € CN+1,
s

1
d/yfreal - 5S—N€_|C|2dc, Cc Ec CN+1,
™

where dg is the delta function on S C CV*!, the set of points ¢ = a + ib € CV*! where
b =0 € RY¥*! Here dvy., corresponds to the standard complex Gaussian coefficients case,

where we are considering
N N /2
_ ¢
e =Ya(y)

=0
where the ¢,’s are standard complex Gaussian random variables, and d7,¢, corresponds
to the standard real Gaussian coefficients case, where we have

N 1/2 N 1/2
N N
fn(z) = E c@(€> 2= E ag<£> 2,
=0 =0

where ¢, = a; + 40 is a standard real Gaussian random variable. We let E(-) denote
expectation with respect to dv, and E,_ () denote expectation with respect to dve,.

The goal of this section is to show the following results about the density of zeros of
fn(z) using the Poincare-Lelong formula: we write

E(Zy(2)) = By..(Z4,,(2)) + B2 n(2),
where
N

E’Ycz(ZfN(Z>> - 2dI/\dy

(14 12)



and Es y(z) is some “error term,” and we show that

02 14 22)N
Eysn(z) = - log 1—1-\/1—‘((—’_—2)]\7

020z 1+ 2?)

2
dz N dy, z € C,

and
Eyn(2) = O(e™), 2z € C\R, A > 0,

or, in other words,

%E(Zfzv (Z>) - %E%x<ZfN(Z)) + O(e_AN)7 z € C\R’

and uniformly on compact sets K C C\ R. We find the scaling limit of the second term
to be

e |?

@|Z|2

z 1 9%

\/N) 70207

lim —Es n( log [ 1+4/1— dx N dy,z € C\R.

N—oo N

Setting z = x + 1y, we can write

1 z
]VIEHMNEQN(\/N) gy a210g<1—|—\/1—e—49>dx/\dyy;ré()

which after adding to  Eye

Zf)) — %, we recover Prosen’s result:
N

1

. 1
]\}vl_r)noo ﬁE’Yreal(Zf(ﬁ)) = ;

L— (4y° + e’

(1— e—4y2 )3/2

We also show that the error term goes to 0 weakly on compact sets K C C:

1
NEQ’N(Z) = O(N™1), weakly on compact sets K C C,
by which we mean that for any ¢ € C°(K),
1
N(E2 N (2),9(2) N/ Ey n(2 =O(N1).

Note that K could contain some points in R, whereas the strong convergence result
excludes points in R.

The first result was given by Prosen as mentioned, but we do it here using a different
method that we will be generalizing in later sections. The approach is similar to that
described in [BSZ00a]|, where they find the limit of the pair correlations of zeros of
random holomorphic sections of powers of a line bundle of a complex manifold. While
we only deal with density of zeros in this section, the condition that the coefficients a;
are real causes the method in [BSZ00a] to be useful.
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1. Pointwise limit for E(Z;,). We write a = (ay, ..., ay) and

N 1/2 N 1/2 N 1/2
FN:(<O) zo,<1> Zl"H’(N) ZN),

so that fy = a-Fi. By the Poincare-Lelong formula, the density of the zeros of f, E(Zy, ),
satisfies

1 = i
E(Zgy) = E(_001og|f|) = E(—d0logla - F).
We write Fy(z) = ||Fn(2)||un(2), where uy(z) is a unit vector. We have

B(Zp,) = B(-00 10 | Ex(2)|)) + B(~00log|a - u(2))
= El,N(Z) + EQJV(Z)

The first term is what we want. First, note that from [BSZ00a] we can see that Ey y(2) =
E..(Zgy(2)). Since F does not depend on a, we have
i
By () = B( 00 log |y )
)

S / 0010g || Fy||dp(a) = ~0dlog || F|| = —0dlog || Fy|[?
11 T 2

T RN
. N
o= N\ .,
—27T8810gz<£>zz
=0
2

- 9
= 2L8ﬁlog(1 + 2PN = ’ log(1+ [2|*)Ndz A dz
s

o C2m0z0:
. %a‘;zmogu +|22)dz A dz = %N%ﬁm A dz
_ %midzAdz - %mi(—%)dx/\dy
- ga +1yz|2)2 e dy

So we have

and we just need to show

Eyn(z) = E(%aé log | - ux(2)))

N+1 T0

_ /R L0108 ]a - ux(2)ldu(a) = O(e ).
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2. Limit of the second term. In the case that c¢; is a standard complex Gaussian
random variable, this second term is zero for all N (not just as N — o00). Because of the
SU(2)-invariance of the standard complex Gaussian measure, one can perform a unitary
change of variables so that u becomes (1,0, ...,0) and the integral [y, 90 log |c-u|du(c)
becomes a single integral that evaluates to 0:

/ ddlog|c- (1,0, ...,0)|du(c) = / 00 log |coldp(co) = 0.
CN+1 C

In the case where a; is real, the second term is not zero for all N. Because only real
rotations can be performed, u can not be rotated to (1,0, ...,0), giving a single integral.
But we can still use the rotational invariance of real Gaussian measures to obtain a
double integral over R? which is a little more manageable than the integral over RV*!,

Let u = Reu +ilmu = (Rewuy, ..., Reuy) + i(Imuy, ..., Imuy). Note that u, Reu,
and Imwu depend on z and N but we frequently omit these arguments for convenience.
Since we need to do real rotations, the real and imaginary parts of u must be rotated
the same. (explain that better?). Therefore, as mentioned, we can not rotate u to (1, 0,
..., 0). However, we can rotate so that either the real part or the imaginary part of w is
of the form (7,0, ...,0), where r = ry(z) is some (non-zero) constant less than 1. So we
choose to perform a (real) rotation of ag,ar, ....,ay so that

= Reu+ilma = (r,0,..,0) +i(Imauy, ..., Imuy).

Then one can perform a rotation of the aq,...,ay variables so that Rew is unaffected
and u becomes

(2.1) (rn(2),0,...,0) +i(sn(2),tn(2),0,...,0)
(2.2) =(rn(2) +isn(2),itn(2),0,...,0).
Note that since u is a unit vector, and rotations preserve length, r, s, and ¢ have the

condition 7% + s? + ¢ = 1. Note also that r, s, and t all depend on z and N but we

frequently omit these. We are now concerned with the limit of the simpler integral,
i/ 00log |(ag, ay, ...,ay) - (r +is,it,0,....0)| du(a)
RN+1

7r
=L / 00 log |ag(r + is) + ay (it)| du(ag)dp(ay)
R2

™

A 1
=99 log |ao(r + is) + a1 (it)|—e @D/ dayda, .
s R2 2m

3. Formula for r. First, we know that since u(z) = IIIIZEQII’ and since the length of Reu
doesn’t change from a rotation, we can write
. | Re ||
r* = ||Redl]” = || Reu|]* = TEE

Note that we are assuming Im 2z # 0. We now state a fact that we will use repeatedly.

Fact 3.3. For complex numbers z and w,
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(1) (Re2)® = L2 + Re2?)

(2) RezRew = 3(Rezw + Rezw)
(3) RezImw = 3(Im zw — Im zw)
(4) ImzRew = 3(Im 2w + Im zw)
(5) ImzImw = L(Re 2w — Re zw)

Proof. (1) Special case of (2) with w = z.
(2) Let z =2 + iy, w = u + iv. Then

Re zw + Rezw
=Re (z + iy)(u + iv) + Re (z + iy)(u — iv)
=Re (zu +izv + iyu — yv) + Re (zu + izxv + iyu + yv) = 2zu.

(3) and (4) are proved similarly.

By the fact we have (Re z%)? = 3|2[* + 1 Re 2%, which gives us

=0 =0
N N
N\1, o N\1_
Z(€)2|z| Z(£)2Rez
_ ¢=0 +e:0
XN NN
Z<€>|Z|22 Z<€>|Z|24
=0 £=0
N
Z(N)Zgz
I S R ¢ 11 1+22\"
2 T2 N —2 72 L+ |22
N 2/
> o )7
(=0

4. Formula for s. Next, we have the relationship Rew - Imu = rs, so since the angle
between Rewu and Imw doesn’t change under a rotation, we have

Reii- Iméi  Rew-Imu Regm Imgm  ReF-ImF 1
S = pr— pr— fry P
r r r || F||? r
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Using the identity Imw? = 2 Rew Imw, for any complex number w, we can write

ReF - Im F = (Re (ﬁ)mzo, ., Re (%)“QZN) . (Im (JOV)”QZO,..., Im (Y) 22
N N

1/2 2! Im 1/2 2t = Imz
1 N
= §Im Z (]Z)z2Z =3Im (14 23N
=0

So we have

5. Formula for t. Since r? + s? +¢? = 1, we have ¢ easily:

[tn(2)]° = 1= [rn(2)]? = [sn(2)]°.

6. Limits of » and its derivatives. We have

Since ‘ﬁ‘ < 1 by the triangle inequality. Equality holds only when z € R, so we have

14|22
that
14 22 N _
(m) = 0(6 AN), A C\R
2 N
(11++—|Z|2) =1 (forall N) ,z € R
z
which gives
1
[rn(2))* = 5 +0(e™),z € C\R
rv(2)P=1,2€R

As a consequence, 2ry(z), 8‘2—227"]\;(2) = O(e™), for z € C\R:
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8 [ 1+22\" 1422\ N
5 (iopp) ¥ (apr) oo

0? 1+ 22 N 14 22 N-2 ) e . )
020z ( ) = NN —1) (m) [¥(2)]* (***not quite ¥°)

1+22\"1 o
N<1+|z|2) 5"

=0(e™),z € C\R

where the ¥(2) is the derivative of the term inside the parentheses with respect to z.
Indeed, all derivatives of r are O(e=*V). Also note that all derivatives converge uniformly
on compact sets K C C\ R.

7. Limits of s,t, and their derivatives. Recall
) L (142 N
syz)==Im | —— | ——.
N 2 1+ 2|2 rn(z)

14 22 N _
<1+|z|2> = 0(e™),z € C\R

Since

1 1
v(2) /124 0(e M)

z € C\R

we have that
sn(2) = 0(e™), 2z € C\R

for all z such that Im z # 0. As we had with r, the derivatives of s go to 0 exponentially
fast as well when z € C\R. Since r? + s> +t* = 1, and [rn(2)]* = 1,z € R, we have that

sn(z) =0,z € R

Since 2 + 52+t = 1 we have t = \/g + O(e M), z € C\R, and uniformly on compact
sets K C C\R, as well as t =0,z € R.

8. Switch to polar coordinates. We now use Jensen’s formula to evaluate the integral

- 1
i88/ log |ag(r 4 is) + a1 (it)| —e~ @6 +D/? dayday .
T R2 2m

First, we switch to polar coordinates, so the integral becomes

27 0
L85/ / log |(psin 6)(r + is) + (pcos 0)(it)|e~*/? pdpdf
6=0J p=0

272
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We may factor out a p from the argument of the log and get

2—7T288/ / (log p + log | (sin ) (r + is) + (cos 0)(it)]) e =**/% pdpdf
0=0 J p=0

2 %)
/ / log pe‘”2 pdpdd
0=0 J p=0

doesn’t depend on z, it gets killed by 90, so we are left with

Since

ﬁ&?/ / log | (sin ) (r + is) + (cos 0)(it)|e /2 pdpdh
6=0 J p=0

The log term doesn’t depend on p, so we may pull that term outside the integral, and
integrate with respect to p to get

27T288 /27T log | (sin 0) (r + is) + (cos 0)(it)] |:/poo

=0

e /2 P dp} do

2

= %85 log |(sin @) (r + is) + (cos 0)(it)] |:_6pr/2] o0 »
0

= 2—7T288 /7r log |(sin @) (r + is) + (cos @) (it)| [1] df

=2—7T2f95 log | (sin 6) (r + is) + (cos 0)(it)| d6
6

9. Jensen’s Formula. Using the fact that cosf = %( ¥ 4+e7%) and sin § = l( e —e=i0),
we can write

SR , , ,
—ﬁaa/ log 5‘(629 — e Y (=i)(r +is) + (e + e ?)it| df
6=0

We can bring out a log %, and since 00 log% = 0, we have

—00 log |(e' Y (—ir + 5) + (" + e )it| db
27T2

We can factor out e, and since log [e=*| = 0, we get

1 3 2 i . i .
—ﬁaa - log (e — 1)(—ir + s) + (e + 1)it| df

2T
Waa/ log | (s + i(t — 7))e® + (—s + i(t + 7))| dO
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We can now use Jensen’s formula to evaluate the inner integral. Recall that Jensen’s
formula states that, assuming ¢(0) # 0, and ¢ is non-zero on 0D(0, 1), then

1 27 ] 1
— [ log|o(e”)|df = log |¢(0)] + log —.
21 Jo=o ¢<w2j):o |w;]

|wj|<1

In our case, ¢(w) = (s +i(t — r))w? + (—s +i(t + r)) so that
() = (s+i(t —r))e® + (=s+i(t + 7))
#(0) = —s+i(t+r)

—s+i(t+71)
)=0 << [w;())P=—-——"—1—"1
¢(wj) [’L%(Z)] 8+i(t—7”)
Note that since |¢(0)> = | —s+i(t+7)|> = s>+ (t +71)* = s> +r* + 2rt + ¢* = 1 + 2rt,

and r and ¢ are non-negative (by construction), ¢(0) # 0. We show that |w;(2)|* > 1,
for all z, implying that |w;(z)| > 1 and that all the zeros w;(z) of ¢ are outside the unit
disk for every z.
We have
—s+i(t+7r)2  sE+t2+2rt + 12

- 4: e
w3 (2)] s+i(t—r) 2+ 12 —=2rt +1r2 —

for z € C since r and t are non-negative by construction. Note that the only time rt
is zero is when z € R. In this case, rx(z) = 1 and sy(z) = ty(z) = 0 for all N, and
jw;(2)] = 1.

10. Exact formula for F; y(z). So since all of the zeros of ¢ are outside the unit disk,
we have for z € C,

1 2m ) .
5 | loglo(e)]db =log|@(0)] = log| — s + it + )]
T Jo=0
1 1
= §log| —s+it+r)* = §log(1 + 2rt)
or
1 . N a2 a? 1
Py log |ao(r + is) + ay(it)|e” " “dagda; = 5 log(1 + 2rt),
T
and

i - . T = 1
Eyn(z) = —2—7T288/10g |p(e)|do = —2—7T286 (2m) 5 log(1 + 2rt)

=00 log(1 + 2rt)
2m

12
- 10207

log(1+ 2rt) dz A dy, z € C\R.
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After some simplification of 2rt we have

1 6 1+ 22)N
EzyN(z):; Zlog 1+\/1—'((—Z2>N

1+ [2%)

2

dz Ndy,z € C\R.

11. Limit for E5 n(z). Since we found that r = ry(z) = \/g + O0(e™V),t =ty(z) =

s+0(e™), and s = sy(z) = O(e™*) and all derivatives (in particular, the first and

second derivatives) of r, s, and t are O(e V)

can say that

uniformly on compact sets K C C\R, we

-
By (2) = B(—00logla - ux()))
= —5-00log(1+2rt) = O(e ™),z € C\R,
(s

and uniformly on compact sets K C C\R, which is our desired result.

12. Scaling limit for E5 x(z). By the chain rule we have for any differentiable function

72)
T 1| =nZ [f(

020z z 020z

N
So we have
1 z 1 0?
NEQ,N(\/N)— Nr D205 log [1 4+ 2rn(2)tn(2)] . dx N\ dy
AN P (—Vtn(—=)| dz Ady,z € C\R
70205 ° NN N s !

and after some simplification we get

2

1 z 1 02 1+ (F))N
—Eyn(—=) = log | 1441 — |— 5+ dx A dy, z € C\R.
N 2NN T 10207 (1+[F PN

We now take the limit and get

2

lim By y(—) = L e (1 1= 2] ) arna € C\R
im — — 0 —|— x z :
Nooo N NN T 702078 BEE 2
Setting z = x + 1y, we can write
1 z 1 02
- _ o—4y?
J\}I—I},;ONEZN(\/N) e 3y 210g< 1—e ) dx ANdy,y # 0,
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and after simplification and adding to %EU\/(\/LN) — %, we recover Prosen’s result

in [Pro96]:
o 11— (42 4 1)e
]\}Lnéo NE'Yreal(Zf(\/Zﬁ)) = ; (1 — 674y2)3/2

13. Weak limit for E; y(2). Let K C C be a compact set. Note that unlike before,
we are including points on the real line. We now show that %EQ goes to 0 weakly on K.
More specifically, we show that for any ¢ € C*(K),

1

1 —1
FE2(2).0) = 7 [ Bun()o()dz = 0N,

Recall that Ey y(2) = E(iaé log |a - un(z)|) By the definition of the expectation of a
m

distribution, we have
(Bux(2).0(:)) = (E(C0010g o ux(2)) . o(2))

—E <%8510g la-un(z)], ¢(Z>)

By the definition of the derivative of a distribution, we have

E (%aé log |a - un(2)] gb(z)) —F (log la - un(2)], %85425(2))

By the definition of a distribution, we have that this term equals

E (/K log |a - un(2)| %88¢(z)) |

Recall that E denotes expectation with respect to the Gaussian measure dp(a). We then
have by definition of expected value that this equals

/RN (/K log |a - un(z)| %a(’w(z)) dp(a).

Since the integrand is bounded, and since ¢(z) does not depend on a, we can switch
the order of the integrals and get

/K (/RN log |a - uy(2)] du(a)) %8(%(2).

Recall that by our calculation above we have that the inner integral is %log(l + 2rt),
so we have

/K (/RN log |a - un(2)] du(a)) %86¢(z) = /K %log(l + 2rt) 00¢(2)
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Recall also that ry(z) and tx(z) are both non-negative by construction, and both are
bounded by 1 since 72 +s%+t? = 1. Both of these conditions are true even on the real line,
where ry = 0 and ¢ty = 0 for all N. This implies the crude estimate 1 < (1 + 2rt) < 3,
everywhere on C and, in particular, on K. Since ¢ € C*°(K), we can write

/ ilogu + 2rt) 00¢(2) < Oi&%(@,
K

2 K T
i
= CH;&%(Z)HD(K)

where ' is independent of N, K, and z, including z on the real line, and the L' norm
|[2004(2)|| 1 (k) depends only on K. So then we have that

(Ean(2),9(2)) < Ck
where Ck is a constant which depends only on K. We now have want we want:

(B (2),6(2) < 0k = OV ).

Note that when we consider compact sets K that include part of the real line, the weak
limit is the only result we have. This is because the derivatives of 7, s,t, and therefore
E, blow up near the real line. When we find the weak limit and move the 99 from the
log term to the ¢ term as we did above, we avoid this problem: only the derivatives of
r and t blow up near the real line, not the values of the functions themselves.



18

4. DENSITY OF CRITICAL POINTS IN ONE VARIABLE

In this section we study the density of critical points of

o= 3oa(V)

=0
where the a;’s are real independent standard Gaussian random variables. This corre-

sponds to the zeros of
oh <~ (N0 ,
fN(@—a—%&g(K) &Z

The goal of this section is to show the following results about the density of critical using
the Poincare-Lelong formula: we write

E(Ciy(2)) = By (Cpy (2) + Ean(2).
(1) We show that

1 1 1 2 !
—E = — - d d
7 Brea (Crx (2)) = — <<1 PR NGO P? +N|Z|2)2) T
so that

lE (C (2))—l;d:c/\d —|—O(N71)Z7£0

N e In T (1 + |z|2)2 Yy ’

1

2 _
NE’YCI<CJCN(Z)) = ; dx A\ dy + O(N 1),2 = 0.

(2) We also show that

. (N?22 4+ N)(1 4 22)N—2 |2
Fa() = o0loe 1+\/1 T

=0 ™M),z C\R,\ >0,

so that
E(Cpy(2)) = By (Cpy(2)) + O(e ), 2 € C\R,

and uniformly on compact sets K C C\R, giving

1 1

E(C =—-————drANdy+O(N~" C\R.
( fN(z)) 7T<1+|Z’2)2 z Y+ ( ),ZE \
Note that we get the same limit %W that we did for the density of zeros,
but the rate of convergence O(N~1) is slower than the rate O(e=*") that we got
for the density of zeros. We still have that E(C},) approaches E.__ exponentially

fast, but E._ is now only asymptotically equal to the limit %W

cx
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(3) We find the following scaling limits:
1 z 1 z 1
—F —  V=—Fy—)=14+ ——— N1 C
N '7cw<CfN>(\/N) N LN(\/N) + (1 + |Z|2)2 + O( )72 S

1 1 0? 1+ 22)e?
lim = By (2 81%]+¢L¢%iiﬁ_

2

= —— dr Nd C
N—oo N \/N) T 0z0Z 1+ |z[2)el TAGY 2 €

(4) Finally, we show that the error term Es n(z) goes to 0 weakly on compact sets
K C C (including points in R):

1

NEZN(Z) = O(N™1), weakly on compact sets K C C,

by which we mean that for any ¢ € C*°(K),
1

F(Ban(2):0(:) = 7 [ Ban(2)0(2)dz = OV ).

The proofs are very similar to the density of zeros in one variable case, so we will leave
out some of the details.

1. Application of the Poincare-Lelong formula. We write a = (ay, ..., ay) and

N1/281N1/282 N1/20N
F:FN(Z):(O,(l) &z,(2) az,...,(N) 5.7 ),

so that fy = a-F. By the Poincare-Lelong formula, the density of the zeros of f, E(Zy),
satisfies

1 .= i
E(Cyy) = E(%Oé)log |fnl?) = E(%a(?log la- Fy|?)

= B(5-0010g | Fx(2)|P) + E(~0910g |a - ux(2)])
= El,N<Z> + E27N<Z),

Fn(z
where u = uy(z) = %
The first term is a known result. First, from [BSZ00a] and the section on density of
zeros in one variable, we have that Ey y(z) = E,_(Cy,). Next, recall that Fy(z) =

£ Hy(z), so we have

0 0 0 ——
2 _ 12 2 _ 7 —
BN = 1S Hu ()P = o () - H ()
and since H(z) is holomorphic, this equals
0 0 — 0?
920z INAHNG) = 55

A quick calculation gives

1 Hn (=)

82
020Z

| Fw* = 1 Hy ()| = N1+ [2[) (1 + N|2[)
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Using this formula, we get

1 1

NELN(Z) = NE’ch(OfN)
1P Ll Nz al

. . - + . dz A\ d
Ta\d+ P2 N+ P? T+ NEp2) Y

Note that

1 2 1 1
. (‘Nu I EE R N|z|2>2> dw A dy=O(NT), 270

So we have that

1 1 1 1
—F =—FE, (Ci)=————=deNdy+O(N* 0
N 1:N<Z) N ’Ycz( fN) T (1 4 ’Z‘2>2 z Y + ( )72 #

We remark that when z = 0,

1 1 1 2 !
1,1 B dz A d
N 1,N(2) = <(1 + |Z|2)2 N(l + |Z|2)2 + (1 +N|Z|2)2> X Yy
1
™

2 1 2
= (2-— %  Ndendy=-(2—-2)dend
< N<1+|z|2>2) rAG w( N) TGy

and

2
NEI’N(Z) = ;dm ANdy+O(N™Y),2=0

So we have so far that

1
E(CfN) = Zdz/\dy—l—O(N_l)—{—Ez,N(z)

1
m (1 +[z[?)
and it reamins to show that

@W@:%E@m%mqumzowkﬂﬂeC@.

2. Scaling limit for £, _(Cy,). We have

1 z 1 z 1 1
NE%Z(CJ‘N)(\/—N) = NEl,N(\/_N) =1+ m +O(N),zeC.
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3. Pointwise Limit of E; y(z). By the definition of expected value,

Eyn(z) = i/ 00log |a - un(2)|du(a).
RN+1

7

As in the density of zeros case, we can perform rotations of ag, ..., any and then ay, ..., ay
so that we have
7 ~ . .
Ean(2) =—/ 90log|(ao, a1, ...,an) - (rn(2) +isn(z),itn(2),0, ..., 0)] du(a)
RN+1

™

= i/ 00 log |ag(r + is) + ay (it)| du(ag)du(ay),
R2

™

which is of the same form as we had in the zeros case. The formulas r = ry(z), s = sy(2),
and t = ty(z) are different here in the critical points case than they were in the zeros
case, but the formulas are similar and a simple fact will show that we still have the same
asympotic results, namely, for z € C\R,

() = 5 + 0™

sn(2) = O(e™™),

x (=) = 5 +O),

and for z € R,
[rn(2)]> =1 (for all N) ,
sn(z) =0 (for all N) ,
[tn(2)]> =0 (for all N) .
4. Formula for ry(z). Recall that have
Re Fy(2)]?
rn(2)]? = [Re Fy(z)]
R TETE

Also, recall that (Rez)? = £]z|* 4+ £2%, so that we have

(RezF1)? = %]z]m”_l) + %Re 2261,
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This fact gives

[ (2)]* = i@[) (Re %ZZ)Q _ i <]Z> E %24 2 + lRe (i’ Z)Ql
=5+ lRe; (]Z) (%ZIZ) <aa/>
273 (

We state a brief fact. It will be more general than what we need here, but the more
general form will be used later when we do the several variables case.

Fact 4.4. For complex numbers z,w, Z, and w, we have the following:

(1) 34 -0 (er,) (%Z“wb)(%%%&) = [N?22 + N(L + wd)](1 + 22 + wa) V>
(2) Z£1+£2 (e1 22)(8% 2wt )(%Eélw&’) = [N2ww + N(1 + 22)](1 + 22 + ww) N2
(3) 251% (0,) (&2 wh) (& 200") = (N? = N)zZw(l + 22 + wi)N 2
(4) Crreo (o) (g2 1w2)(2002) = (N? = N)2 (1 + 22 + wi)V >

Proof. See Appendix.

We use (1) with w = @ = 0, and we evaluate at Z = z to get

fi:;( >< )(382 ):(N222+N)(1+z2)]\’—2

and we use (1) with w = @ = 0, and we evaluate at Z = Z to get

gNo (]D (%%) (%%) = (N2[22 + N)(1 + |22V -2

So we have

1 [N222 + NJ(1 + 2?)N—2 1 N
- —-4+0 f C\R
2 TN E Mz 2 2 (e77), for 2 € C\R,

()] =5 +

1
2
and uniformly on compact sets K C C\R, and

rv(z)? =12 €R.
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5. Formula for sy(z). Next, recall that

Reupy(z) - Imuy(z) _ Re Fiy(z) - ImFy(z) 1
N (z) [ En (2)]]? N (2)

sn(z) =

Using the identity Imw? = 2 Rew Imw, for any complex number w (Fact ???), we can

e () 2 [ ()2
- (F)am (L)
3wy () (3) ()

Im [(N2z2 + N)(1+ ZQ)N_Q} ,

Re

Mz

Re Fy(z) - Im Fy(2) =

o~
Il

Mz

~
Il

(NN Mlb—

using the Fact again. We have
+Im [(N222 4+ N)(1+ 22)N72] 1
£ rn(2)
I { (N222 + N)(1+ 22N~ } 1
m .
(NV2[z* + N)(1+ [2)V2 ] rn(z)

N2224+ N /1 N=2 1
Im [ i ( + 2 ) ] —— =0(e™), for » € C\R,
T

sn(z) =

1
2
1
2 N2|z2+ N \ 1+ |z|? ~N(2)
and

sn(2) =0,z € R.

6. Formula for t. Since r? + s> +t* = 1, we have ¢ easily:

1
[tn(2)]* = 1= [rn(2)]* = [sn(2)]* = \/;Jr O(e™"),z € C\R,
and uniformly on compact sets K C C\R, and

t=0,z e R

Also, note that all derivatives of ry(z),sy(z) and ty(z) are O(e™*) and that all
derivatives converge uniformly on compact sets K C C\R.
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7. Exact Formula for F, y(z). Recall that

l = . .

Eyn(z) = — [ 00loglag(r +is) + ar(it)] du(ao)dular),
RQ

and note that it is of the same form as the formula for £y y(2) in the zeros case. The only

difference is the formulae for r, s, and t. If we can write our integral in polar coordinate

and use Jensen’s formula the same way as before, we get that

2
882 log(1 4+ 2rt) dz A dy.

Eyn(z) = —iaglog(l +2rt) = —

After further simplification of 2rt, we have that

R, 1+\/1—' (N222 + N)(1 + 22)N-2 |2
(

Eyn(z) = dx N\ dy.

70207 N2|z|2 4+ N)(1 + |z|?)N -2

8. Limit for E; y(z). Though we got different formulas for r, s, and ¢, we still had that
r=ry(z \/7+O 2Nt =tn(z \/>+O e M) and s = sy(2) = O(e ) and

all derlvatlves (in particular, the first and second derivatives) of 7, s, and t are O(e V)

on compact sets K C C\R. So we can still say that

Eyn(z) = —%aélog(l +2rt) = O(e™)

on compact sets K C C\R, which is our desired result.

9. Scaling limit for Es n(z). We have

1 z 1 07 (1 + 22)e?®
lim —F — 1 1 l—|——F—
Neao N 2N(\/N) R \/ ’ (1+ |z]2)el=?

2
dr Ndy,z € C

10. Weak limit for Fs y(z). Let K C C be a compact set. We now show that ]lVEQ
goes to 0 weakly on K. More specifically, we show that for any ¢ € C*°(K),

1 -1
~ (B (2),0 N/EQN =O(N7).

We have shown that

(Ban(2).00:)) = [ ([ 1ogla- u(e)lduta)) Lodo(s)a:

_ /K (%log(l—i—%t)) (%88¢(z)) d

In the zeros case, we used the fact that 1 < (1 + 2rt) < 3, everywhere on C and, in
particular, on K. Here, r and t are different, but we still have that both are non-negative
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by construction, and both are bounded by 1 since r? 4+ s? + t* = 1. So we still have the
rough bound 1 < (1 + 2rt) < 3, and we therefore have

1 o .
/K (élog(l—i—Qrt)) (%88(]&(2)) dz < /K CL000(2) dz.
= O||-96(2)]12x) < Ci

where C is independent of z and N and depends only on K. We now have want we

want:

1

~ (Ban(2),¢(2)) <

N CK:O(N_I).

1
N
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11. Appendix-Proof of Fact.

Proof. We prove just (1) and (3).
(1)

N N
N 9 Lyl 9 1,502 9 9 N £y, b2 501 702
fl—%o <€1,€2)<822 v >(8,€Z v >— 8282 ZO 61,62 2w

Ly+lo=

= %%(1 + 22 +wd)N = %N(l + 22+ wd)V 2
= N(N —1)(1 + 22 + wd)" 222 + N(1 + 22 + ww)¥ !
= N*(1 + 22 + wd)V 222 — N(1 + 22 + wd)V 222 + N(1 + 22 + wd)¥ (1 + 22 + wid)
= N*(1+ 22 + wd)V 222 + N(1 + 22 + w)V (1 + w)
= [N?222 + N(1 + wd)](1 + 2% 4+ ww)" 2

(2) Similar to (1).

(3)

N N
N 9 ly,,,02 0 byl 9 9 ( N ) £y ,,02 501 702
Zl—%_o (81,62) (azz w )(a’LZJZ w ) — 82 aw Zl%_o £17£2 ZTWwW 2w

0 0 0
1 ~ ~\IN — N 1 ~ ~\N—1
5 _(%TJ( + 2Z + w) 5 (14 2z +ww)" " w

= N(N = 1)(1+ 22 + wd)" 2w
(4) Similar to (3).
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5. DENSITY OF ZEROS - m VARIABLES CASE

In this section we are concerned with the zeros of h,, n = (fin, .., fmn) : C* — C™,
where f, x is a polynomial of the form

N 1/2
ho = ()

/=0

where a% is a real standard Gaussian random variable, and where we use the following
multi-index notation:

2= (21, Zm)
[J]=J1+ "+ Jm

aj=aj ; €R
NY N B N!
(J) a (jl,...,jm) (N =g =)l !
2l =t 2m,

Instead, we choose to think of the random polynomials

N 1/2
hoe) =3 ()

|7]=0

where ¢? is a more general complex random variable with associated measure dvy for each
q. We then consider two special cases

1 e N
dYer = gV de,c € CPV, Dy = ( . m)
™

m
s b e Dy
dﬁ)/real - 55 Ne dC, ceC )
™

where dg is the delta function on S C CP~| the set of points ¢ = a + ib € CPN¥ where
b =0 € RP~. Here dr., corresponds to the standard complex Gaussian coefficients case,

where we are considering
N N V2
h = ()4

|7]=0
where the ¢%’s are standard complex Gaussian random variables, and d¥,e, corresponds
to the standard real Gaussian coefficients case, where we have

N N 1/2 N N 1/2
f,N<Z>: ZC?](J) ZJ: Za?f((]> ZJ7
|J|=0 |J|=0

where ¢! = a% + 40 is a standard real Gaussian random variable. We let E(-) denote
expectation with respect to dv,. and E,_, () denote expectation with respect to dve,.
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Let K C C™\R™ be compact, and let A be a positive constant. The goal of this section
is to show the following results about the density of zeros of hx using the Poincare-Lelong
formula: we write

E(Zny)(2) = By, (Zny)(2) + En(2)dw

where

mN™ 1
E’ch(ZhN)(Z) = T (1_|_ Hsz)mH dw,

where
do=dxy Ndyy ... \dx, N\ dym,,

|2]1> = [21]* + - + |2m|*, and Ey(2) is some “error” term. We give an exact formula
for En(z), and show that it goes to zero rapidly, i.e.,

En(z) = 0(e™M), 2z € C™\R™, and uniformly on K,
so that we have
E(Zny)(2) = By (Zny)(2) + O(e™™Y), 2 € C™\R™, and uniformly on K
and,

1 k 1
—E(Z R

In other words, at any point away from R™, the expected density of zeros in the real
coefficients case approaches the expected density of zeros in the complex coefficients case
as N gets large.

dw + O(e™*), z € C™\R™, and uniformly on K.

We also give a formula for the scaling limit of Ex(z), which we denote E.(z), and
show that as |Im z| — 00, Eo(2z) — 0. In words, the scaled density of zeros in the real
coefficients case approaches the scaled density of zeros in the complex coefficients case
as you move far away from R™.

We follow the proof in the one and two variable case and begin by writing

q __ q q q Dn
a® = (ag,. gy Ay e Qg O,N)ER

F,n(z) = Fn(2) = (<O, '.‘7(]) - (J) 27 (O,...,O, N> z?zﬁf) c RPN

N .
where Dy = (V™), so that we can write f,y = a?- Fyy = a?- Fy.

By the Poincare-Lelong formula, we have

U .5 i =
E(Zg(2) X ... X Zg, (%)) = E(%E)@log If2 A A %aﬁlog | finl?)

E[ (%)m <8(’§log la' - F2 A ... AOOlog |a™ - F|2>]
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which we can write more succinctly as

_ (%) E(q/_\laalog|aq-F‘2>.

Writing F' = ﬁHFH and u = ﬁ7 we can write this as

m m

=) E( N\ o0tog|a- |F||y| II°)

q=1

( >mE[7\ (001og||F||* + 00 1og |a? - u| )}

<
—

Since ddlog ||F||? + 00 log |a? - u|? is independent of a’ for [ # ¢, then by a lemma in SZ
[777] we can write this term as

< . )m/m\ [351022"F!\2+8510g’aq,uyz]

(- )MK (00108IFIF + E[00%0g a" - uP]).

At this point, we could find the large N limit; we have essentially reduced the m-variables

case to the same calculation as the 1-variable case, namely showing that £ [88_ log |a?-u|?
is O(e V). If this term is indeed O(e~*"), then all but one term in the wedge product
goes to zero exponentially fast. Since we want an exact formula for the density of zeros,
we delay the proof of the large N limit, and we first work out the details of writing an
exact formula more explicitly. From that formula, the large N limit and the scaling limit
will follow easily.

We write

(%) E[ /\ (001log || F||> 4+ 00 log |a? - u\z)} =(Ey\n(2) + Eon(2) + ... + Eom y(2))dw
q=1
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where

By n(2)dw = <%> E(aélogHFH? A 9Blog ||F|2 A ... A 9B log ||F||2)

By (2)dw = (QL) E(aélog la' - u| A 3Blog ||F|]2 A ... A D log ||F||2>
e

Eom n(2)dw := (%) E(@élog la' - u| A DD log |a* - u| A ... A DD log |a™ - u])

We look at these 2™ terms and we claim that only the first term is non-zero in the limit.
The first term is known:

Ein(2)dw = BE(Zy,,) = (2i) E(@élog |1F|? A 8dlog || F|* A ... A 9 log HFH2)
T
mN™ 1 J mN™ 1
W = W
T (L [z + o [z )7 (LA [|z]2)m

1. The remaining terms. We know show that the remaining terms FE, ..., Eom are
O(e™*). Consider the i-th term, E,. This term is of the form

E,n(2)dw = E(00¢] A ... N 0OL,)

where ¢ \ (2) is either log || Fiy(2)|| or log |a* - uy(z)| for each £. For example, for F y(2)
we have ¢? = log|a' - u| and ¢7 = log ||Fy(2)|| for 1 < ¢ < k. Writing out the wedge

product we get
0’ 0?
_10'+7'( _ ’1)( _ 7qﬂ>
2.1 025(1)0%r(1) o 02 (m) OZr(m) ’

o, T

quN(Z) =F

where the sum is over all permutations ¢ and 7 of {1,2, ..., m}, and where (—1)? denotes
the sign associated to the permutation o. Since the sum is finite, we can write

+ 82 q 82
Enz) =S (1D E | —F 7)o [ ——
() =2_(=1) Kazg(l)az(l) 1) (3za<m>357<m> mﬂ

a,T

or
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To simplify notation even more, let

82
DZ = —
0z4(0)0%r ()
so that we have
E7) = B | [] Det(s) ]
/=1

Now, note that ¢f(z) does not depend on all of a',...,a™, but only depends at most
on a’. (If ¢(z) = log || Fx ()|, then it doesn’t depend on a’ either.) So because ¢}(z) is
independent of a’ for all ¢ # ¢, we will write this integral over RPN x ... x RP¥ as a
product of integrals over RPN . To do this, we first let

¢ = {0 : ¢} is of the form log||Fn(2)||} C {1,...,m}

and
Ly = {0: ¢{ is of the form log|a’ - un(z)|} = {1,...,m}\L.
We can now we split the product to get

ETN(z)=E (H Dg; <z)> (H Doy (z))]

(el el
=F <H Dy log HFN(z)H) (H Dylog|a’ - uN(z)|)]
[ \eeL el

By the definition of expected value, we have

Eqgn(z) = /RDN [(H DelogllFN(Z)H) (H Dy 10g!a£‘uN(2)!)] dp(a') - dp(a™),

leL lel’

Note that the first product is independent of a’ for all £ € L', and the second product is
independent of all £ € L, so we can write E"{(z) as

[/]RL|DN HDE log HFN(Z)HdM(ae)] /RUIDN H Dylog |a’ - un(2)] d,u(a")]

ter
The first product is also independent of a’ for all ¢ € L, and since Sy du(a®) =1, we
have for the first integral

[ Ditog llEn (=)

lel

Even more, the ¢-th factor in the second product depends only on ¢ and is therefore
independent of all ¢ € L’ not equal to £. So the integral of this product becomes a
product of the integrals:

H Dylog|a’ - un(2)| du(a®)
RPN

lel’
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and we can switch the derivatives and the integral to get

[12: [, tosla’ un() duta).

ter’ REN

Putting everything together we have

E7%(2) [HDglogHFN ] [

lel

[[0: [, togla u(a)] dufa’)

telr R¥N

Now, consider the integral

/1m%w@mwy
RPN

Note that the form of the integral is the same as what we got in the one variable case, so
we proceed in a similar manner. We rotate (ag...q, ..., Go..on) and then (aiq..q, ---, @o..0N)
so that the integral becomes

/ log|a’ - (r +is,it,0,...,0)| du(a’) = / log |ag...o(r +is) + a10..0it| dp(ag...o) dp(aro..o)
RPN R2

where r = ry(2),s = sy(2), and t = tx(2).

We have similar formulae and large N limits for r, s, and ¢:

2 1 m —AN m m :
=-+-R =~ 4+0 .z € C™\R™, and uniforml K
[rn(2)] 5 T5Re (1 PIEEp |2) 5 (e7V), 2z \ and uniformly on

1 14224422 \V 1 “AN '
sy(z) = =Im uc =0(e ,z € C"™\R™, and uniformly on K

[tn(2)]? =1—[ry(2)]? = [sn(2)]* = % +O0(e™), z € C™\R™, and uniformly on K.

—AN)

Also, all derivatives of r, s and ¢ are O(e uniformly on K.

2. Exact formula for Ey(z). By the calculation we did before, we can write

. . 1
/ log |ag..o(r + i8) + aio..0it| du(ag...0) du(aso..0) = 5 log(1 + 2rt),
R2

which gives us

g, T
EqN

= |[] Delog || Fx(2) ] [H Dgélog(l + 2rt)

leL Lel!

Further simplification gives

E°T (2 HD—lo (1+||z]HY HD—lo 1+ o [dEze )t
S 9% 5% A ERE

lel Lel’

2
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where we use the notation z - z = 22 + - -+ + 22 ||2||* = |z1)* + - - - + |2 |*. Finally,
Eyn(z) =) ()77 E;(2)

and

3. Large N limit for Ey(z). All derivatives of log||F|| are bounded. Next, r =

ryn(z) = \/g—i- O(e™), t = tn(z) = \/g—i- O(e™™), and s = sy(z) = O(e ") and
all derivatives (in particular, the first and second derivatives) of r, s, and t are O(e V)
on C™\R™. So we can say that all second derivatives of log(1 + 2rt) are O(e ") on

C™\R™. This means that

E7G(2) = O(e ™),z € K.

Since this is true for each i, 0, and 7, we have

om

=> D (-)TEIN(2) =0(e ™),z € K.

q=2 o,7

4. Scaling limit for Ey(z). We have

e||ZH2

1 o,T Z o,T 2 1

leL lel’

where we use the notation z -z = 2§ + .-+ + 22, |[2]|* = |21 + - -+ + |2|®. If we write
z=x+iy, then z- 2z = |z|? 4+ 2i(x - y) + |y|>. Since [e2=¥)| = 1, we can write the second

product as
1
H D(§ log (1 +4/1— 6—4\yl2>
ter’

Since the first product is bounded (it is either 1 or 0 for each ¢, depending on ¢ (¢) and
7(¢)), and the second product goes to zero exponentially fast as |y| — oo, we have

ES7.(2) — 0, as |y — oo.

Since this is true for each 7,0, and 7 we have

ZZ )7TETT (2) — 0, as |y| — oc.

q=2 o,7
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5. Exact formula and Scaling limit for the 2 variable case. When m = 2, the
formulas for the density of zeros and the scaling limit of the density of zeros are simple

enough to be written as a sum of 3 terms, and we work out the details now. We have
hy(z,w) = (fx(z,w), gy(z,w)) : C* — C?, where

N N\

We write

_ N(N+1)/2
a = (@oo, @10, A20, ---, ANO, Go1, Q115 ---, Aon ) € R (V+1)/

b= (bo(), blg, bgg, ey bNO, 6017 b117 ey bON) c RN(N+1)/2

N\ /2 N /2 N\ /2
Fy(z,w) = Gn(z,w) = (<O 0) 22u?, (1 O) . (O N) L) € RNIVHI/2

sothat f =a-F and g =b-G = b- F. After some algebra (see Appendix), we have for
the first term, Ey y(z, w),

1 1
272 (1+ |22 + |w]?)?
)2 1

w2 (14 [z + [w]?)?

ELN(Z, ’LU) = —N2

Next, note that since a and b are identically distributed,
Es n(z,w)dw = E(@élog [|F||> A00log |b - u]2> :E<8510g [|F||> A 001og |a - u|2>
and since the 90-terms are all 2-forms, we have that
E(aé log || F||? A 0d1log |a - u|2) :E(85 log |a - ul? A 98 log ||F||2) = By n(z,w)dw,
which means
Es n(z,w) = E3 n(z,w)

Writing 2; = 2z and 25 = w, we have

By n(21,22) = Es (21, 22) Z WQ
a(1 (1

0? 0?

1 2rt) ————— log || F||?
og(1+2rt) 55— log ||

62
E4 N Zl, ZQ Z 820 aZT 10g(1 + 2Tt)m lOg(l + 27’t>
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and

En(z1,22) = Ean(21, 22) + Es n(21, 22) + Ean(21, 22)
9

ey (ont+2r0) T (atoall P + 1t +2)
= —— | =log(1 4+ 2rt) | ———— ( 2log || F||* + = log(1 + 2rt) | .
> Gy N3 R+ 21) ) o (21 I + o1+ 201

We now write out the sum to get

Esn(z,w) + E3 ~N(z,w) + Eyn(z, w)
828,2 (3 log(1 + 2rt)) 5 8w81f)

_azaw (%log (1+2rt)) 50 Budz
t ) a'lIJ

(2log ||F||* + L log(1 + 2rt))
(2log ||F||* + 4 log(1 + 2rt))
( (1+2rt))
3 ( (1+ 2rt))

2log || F||> + § log(1 + 2rt
2log || F||> + 5 log(1 + 2rt

0z

2
+33§ (%log (1+2rt)) 52

020

Since

52 52 BE
5005 = Grgp VB w) = gz v w)

for any real function ¢(z,w), and since

2 N 2

go00 W)+ 5 a0 w) = 2Re o 5n

b(z,w),

we have

o2

Eyn(2) + Esn(2) + Ean(2) =525z (5log(1+ 2rt)) 52 awaw (2log || F||* + 3 log(1 + 2rt))
—2Re 3z;w (%1 g(]' + 27‘t)) 3w(9,z (2 lOg ||‘F||2 5 IOg(l + 27”t>)
+52 (Llog(1 + 2rt)) 52 (2log || F|[? + Llog(1 + 2rt)) .

where

1F][? = (1+ |2 + [w]*)™

1 2 2\N
27"15:\/1—(( + 22 + w?)

L [22 4 [w[)¥

This simplified formula is still messy, but it can at least be written in a couple lines,
and is useful enough to plug into Maple, for example, and get a plot.
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6. Scaling Limit for Ey(z,w). Writing z = z 4 iy and w = u + iv, we have
1 (\/N \/—) Es,zv(%, \/i_) + E47N(\/L_7 \;U—_) -
oz (log(1+ VI — e T0) ) 20 (2og(|2f + [w]?) + Flog(1+ V1 = e-T0757))
e 52 (3log(1 + VI=eTTT) ) 52 (2log(|2f2 + [uf?) + log(1 + VI = e w5))
(

+ 5055 (3log(1+ VI = e T07F) ) 0 (2og (|22 + [w]?) + §log(1 + VI — e T07F) )

7. Appendix - Calculation of E; y(z,w).
By n(z,w)dw = 0d1og||F||* A 90 log || F||?

o (G o 1P1P) (52 tosl1FIP) — 2 (5= tos 1FIF) (52 togl|FIE )| d
~[T\oz0z w8 D200 ° ooz ® v

B 2N2[ ((1 + |1;|; |j||2w|2)2) ((1 +1|;|r2 |:LU||2w|2)2>
R ((1 + |Z_|2wj|w|2)2> ((1 + |zTZZiU |w|2)2) ] dw

L+ [ + [w]?) — [2w]?
(14 [2% + [w]?)*

:2N2( dw

1+ |w* + |22 + [z2w]?) — |zw]|?

d
L+ 2P + [wP)? ?
1 2 2 1
PR Ll il P i
(1+ [z + [w]?)? (1+ [2[* + [w]?)
after some algebra. So we have
1 = = 2N? 1
— 5 B(0010g || FI[* n 09108 || FII*) =~ B( aw)
g\ 008lIFIE A 0010 IFIF) = =g B e

-5 [ [ ] @
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and since the integrand is independent of a and b, and since dw = dz A dz A dw A dw,

this equals
N? 1
272 (1+ |22 + w]?)3
=— Al ! (=2i)dx A dy N (—2i)du A dv
2m* (1 + 22 + |w[?)?
2N? 1
= AT 22 + WPy dx N dy N du N dv

dz NdzZ N dw A dwo
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6. DENSITY OF CRITICAL POINTS IN m VARIABLES CASE USING KAC-RICE METHOD

We first consider h,, y : C™ — C where h,, y is a complex random polynomial of the
form

N AN /2
th(z):ZcJ(J) 27

|J]=0

where the c;’s are complex random variables, with associated measure dy and where we
use the following multi-index notation:

2= (21, Zm)
[Tl = g1+ 4 m

CcCj = Cj1---jm c (C

(N) B ( N ) B N!
J Jisees Im (N =1 — o — J)lg1! o !

2l =2t

We consider two special cases
1 —lel2 N +m
d’ch - ﬂ-_Ne . dC,CE CDN?DN = ( m )
1
d’}/real = 5S_N€_|Cl2dcﬁ cE CDN)
s

where dg is the delta function on S C CP¥, the set of points ¢ = a + ib € CP~ where
b =0 € RP~. Here dry., corresponds to the standard complex Gaussian coefficients case,
where we are considering

N A 2
bosl) = S o)+

|J|=0

where the c;’s are standard complex Gaussian random variables, and d,.,; corresponds
to the standard real Gaussian coefficients case, where we have

N N 1/2 N N 1/2
hmVN(Z):ZCJ(J) ZJ: ZGJ<J) ZJ,

|J|=0 |J|=0
where ¢; = a; + 10 is a standard real Gaussian random variable. We let £, (-) denote
expectation with respect to dv,e and E,_ () denote expectation with respect to dve,.

The goal of this section is to show the following result about the density of critical
points of hx using the Kac-Rice formula:
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Theorem 0.5. Let K C C™\R™ be compact, let X be a positive constant, and let h, Ve,
and Yreq be defined as above. We have

Ery oot (Ciy)(2) = En, (Ciy ) (2) + O(e™Y),
for all z € C™\R™, and uniformly on K.

In other words, at any point away from R™, the expected density of critical points in
the real coefficients case rapidly approaches the expected density of critical points in the
complex coefficients case as N gets large.

Instead of studying the critical points of this random polynomial h, we could equiva-

lently study the zeros of (f, v, .-, frnn) 1 C™ — C™, where f, y is a complex polynomial
of the form
N 1/2
N J
fon(2) = JE._O cv( J) 9.7 1<g<m.

We'll consider f, y(2) as a function from R*™ to R*™, use the fact that Cj = Zj,..5,, =
Zf{f:nf{f;'n’ where fq = f;+lf;, and find EV(Zf{fyrylf{f»}n) COHSider xr = (fir7 e TCL’ f{, Ce ,f;n)
Let £ be the matrix of derivatives of the function

(T1y e T, Y1y -+ YUm) — .

(). (ae)
g )1 <qq<m N/ 1<qq<m

o) ()
0 )1 <qq<m N\ /) 1<qq<m

: . . ofy  Ofy of;  Ofy
Noting the Cauchy-Riemann equations hold, and that = and = N
Ory Oz, Ory Oz,

We can write

(&

can choose a new basis and write £ as a vector

- ) Ofr of: 2,
¢=Ies = ((3$Z’)q§q” (ax;z’)qSQ’) =

where d,, = m(m + 1)/2. Note also that because of Cauchy Riemann equations, det ¢ is
positive, and /det ££T = det £, By the Kac-Rice formula, we have

Ey(Zgy.pr giogs) = /R . det(£€T) D, (0,&; 2)dE = det & D,(0,&; 2)dE

R2dm

where D, (z, é ; z) is the Gaussian density in 2m + 2d,, variables given by

N 1 1 —1(x x
D (z,&2) = e 28 (8):(2))

amtdm, /det A,
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x
and where A, the covariance matrix of ( g>, is given in block form by

A, = ( el ) (2m + 2d,,) X (2m + 2d,,) matrix)
0% Y

Ay = (By(zgZy)), 0 = Ag (2m x 2m matrix)

B, = (Ew(xqéj»qj (2m x 2d,, matrix)

C, = (Ew(gjéj,))jjl —cr (2d,, X 2d,,, matrix).

where 1 < ¢,¢ <2m,1 < j,5' < 2d,,. Note that we can also write A, B, and C' in block
form as

(Bs(£350)) o (BAU510))

Aw =
(B g (BS(FiF),
afT/ fi/
<E'7 ( ;612/>>q7q/’p/ (E’Y ( ;ax;))qq/p/
B, =
o afi,
(E’Y ( ‘;3:132/))(1 a.p (‘E’Y <f; (%ci/ ))
s a9,
afr o1, [ of; 94\ |
[E’Y (ﬁﬁﬂ a.p,q" 0 _Eﬁ (69&1 Bwi/ dapqd.p
=
b, (220)] B, (2
7\ Ozp 8xp/ a,0,".p i T\ Ozp axp' lap.a o

where 1 <g<p<m,and 1 <¢ <p <m.

Now, using the fact that for D. (0, é ; z) only the lower right block of A;l matters, we
can write

N 1 1
09 o (40.0)
Y
_ 1 1 (L
™. /det A'y 7-‘-dm ’detA7 e p( 2<A'Y §7£>)
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where A7 1is the lower right block of A7 L and is given by
Ay =C,—BIAJ'B,,

We have also used the fact that
det A, = det A, det A,.

So now we have that
1

1
mdm /det A, P ( 2

EL(Ch) = E (A€, é>) &é

1
L ... = ——
7( f1 fm) WWM/RGZWL(

- LB (dete),

mmy/det A,

since det{ > 0. We now want to evaluate E, (det§) using the Wick formula, which
states that if Xy,..., Xy, are jointly Gaussian random variables, then

E([[X)=>_T]EX:,X;,)

where the sum is over partition of {1,...,2m} into disjoint pairs {7, j, }.

det &)

First we write

2m 2m
B (det§) = Ey, ( > Sgn(U)Héq,(f(q)) = > sgn(o)E,, (H §q,a<q)>
q=1 q=1

0ESam oES2m
= Z sgn(a) Z H EAW (giq,a(iq)gjq:g(jq))
0ES2m q=1

where o is a permutation, and where the second sum is over partitions of {1, ..., 2m} into
disjoint pairs {ig, j4}-

Note that terms of the form

EAW (giq,a(iq)gjqﬁ(jq))

are actually entries of A,. So we have written Ex_ (det&) as a sum of products of entries
in A,. More specifically, we have that E,_(det &) = ¢(A,), where ¢(A,) is a homogeneous
polynomial in the entries of A,.

1. Two special cases. Suppose now that we have the measures

N+m)

m

N+m
m

1 2
_ —|el D _
d%x—ﬂDNe de,c e C N,DN—(

1 2
_ —|¢| D o
d’yreal—(SSﬂ__DNe dC,CEC N,DN— (
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where dg is the delta function on S C CP~| the set of points ¢ = a + ib € CP~¥ where
b =0 € RP~. Here dr., corresponds to the standard complex Gaussian coefficients case,

where we are considering
N A 12 ;
hpn(2) = Z il z
|7]=0

where the c;’s are standard complex Gaussian random variables, and d,., corresponds
to the standard real Gaussian coefficients case, where we have

N N /2 N N /2
_ J _ J
hmyN(Z>—ZCJ(J) z —ZaJ(J) z
|J]=0 |7]=0
where ¢; = a; + 10 is a standard real Gaussian random variable.
We now state three important lemmas.

Lemma 1.6. Let K be a compact set in C™\R™. The following are true for all q,q',p,p’
and for some A > 0:

(1) Ewcz(quq’) =0

(2) % = O(e™™), uniformly on K

ofe\
(3) E’ch (fQ8Zp/> - 0
of,
E’Y'real (fq 8zp/)

(4) L = O(e™), uniformly on K
Z-Z
af, Of,
5) B, (22200 — g
( ) Yex (azp aZp/)
E (%6f0’)
Yrea z Z
(6) a ;_ i p_a)Jf, = O(e™), uniformly on K
z-Z
Proof. We prove just (1) and (2), the rest are proved similarly. For (1) we have
By, (quq’)
[/ N 1/2 N 1/2
N 0 N 0
— F J K
(Z o(5) 57 ) [ Zelr) o
| \[/I=0 |K|=0
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since E(cycr) = 0 for all J, K. (Note that E(cycx) = 1 when J = K, so E,_ (f,fy) # 0).

Similarly, for (2) we have
Ev z(foQ’) 1 g N V2 N 2 9 J 9 K
rea — E - -
(1 + 2z Z)N (1 + z- 2)]\7 Z 2:: Yreal (CJCK) J K azq’z aquz
N N 1/2 1/2
B 1 N N 0 ;0 g
Ttz 2N 2 2 By (agax) (J) (K) 0z, 0zy

N
B 1 N\ o , 0
_(1+Z~Z)NZ J)@zqz azqz
—0

since E, _, (ajax) =1, when J = K, and is zero otherwise. We can then write

E’YT&al(quq/) _ 1 Y a J a ~J
(1+z-2)N  (142z-z JZ:: 8zq q/Z 1+2z- zNZ azq 8zqz iz
1 0 0 <~ (N, _, 1 o 0 NS
- (1+Z ) a_an |JZO< ><ZZ) 2:2_ (1—|—z2)N3_21132q/(1+zz) Z=z
B 1 B N2 B B (1+z-2)N2
- (1+z.5)NN(N 1)Zgzg(1+ 2+ 2) g:z_N(N 1)zq2¢ 1+z-2)N
NN = Dzgzg (1422 N=2
(14222 \1+z-z

1+ 2- z‘

Since [1+z2 2| <|l+z-Z|=1+2-%, forall z € C™\R™, wehavethat’
+z-Zz

1+2z-2\"7?
which implies that (1 . z) = O(e™), 2z € C™\ R™, and that

E ,
% = O(e™™), uniformly for all z € K ¢ C™\ R™.

where K is compact. Il

Lemma 1.7. Let K be a compact set in C™ \ R™. Using the results of the previous
lemma, we have for all q,q',p,p’:

(1) B (f£i) =
E’Yreaz(f;f;/>
(1+2z-2)N

afL,

(3) Bn.. (f:; aj: ) =0

= O(e™), uniformly on K
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Los,
E’Y'real q Bmpz
(4) = O(

1z 2N
ofr Of,
(5) E’Ycz 8.Tp axp/ - 0

afr 0y
E’Y?‘eal <8_zp axp, )
(6) Atz 9" = O(e™), uniformly on K
Z-Z

7)\N)

e , uniformly on K

Proof. We again prove just (1) and (2). Using f; = %(fq + fq),f; = %(fq — f,), we can
get that

E’ch(ft;f;’) = E%;c(quq’ - quq’ + quq’ N ftzﬂ’) =0

EyaBi ) _ B Ualy —July + Jofy = Do) _ gy o)
(1+z- )N (1+2z-2)N a

for all z € C™ \ R™. Statements (3) through (6) could be proved similarly, noting that

ol _ 0l 0

fq is holomorphic so that o = dro

Lemma 1.8. We have for all q,q¢',p,p':

(1) E'Yc:v(fqqu/) = E’Yreal(fq.f_q/)
ofe\ Ofy
(2) E’ch (fq 8Zp/> - E’Yreal (fq azp/ )

0f, 0fy Of, 0fy
E J47I9 ) — | ZJ97Ja
®) e ((9Zp azp’) Treet (azp Oz >

Proof. We prove (1), and (2) and (3) are proved similarly. We have

E%x (quq’)

N N 1/2 1/2 -
__ (N Mo [0
= E E E’Ycz(chK)(J) (K> a—zqz %ZK
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since E.,_, (c;¢x) =1, when J = K, and is zero otherwise. Likewise, since E, (¢ Cx) =
E, . (aax) = E,  (ajax), we have

N N 1/2 1/2 _
N N o ;0 L

’Yreal quq Z_ [{Z Yreal CJCK (J) (K) a_zqz %Z'
N
0
=2 ( )a— 10— B
|J|=
O

Using these 3 lemmas, we can write A, B, C' and therefore A in more detail. We have

(Evcm(f;" ) ) .
y (i+z-2V),, o
Yex

= 0 B,..(fafi) 0 —A

(l+z-27)
Emaz(f;“f;)) .
. ( (L2 2%/ gy e A O(e™™N)

(14z-2)N O (E%eal(f;f;,)) Oe™)  —A

1tz 2)N

so that we get

A’Yreal _ A

= Vex O _AN £ | K
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Likewise, we have

TBfT,
E’YCI ( q 3$Z/> 0
(1+z-2)N
q,9.p B 0
B _ )
1+z-2)N o
( ) E’ch ( qax;> O _B
0 —_—
(1+z-2)N
q,q.p
af’,
E’Y'real ( (;6 4 )
! —AN
(14 2- Z);’ O(e™™)

Yreal q,q.p 5 O(ef)\zv)
Q+z-2)N » _ ’
( zZ Z) E’yreaz ( q8z2/> O(e )\N) _B

O(e= N
() =
q,9.p
so that we get
Yreal B

= Vex O _AN £ | K
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and
afr ofr
E’ycz (ﬁ 8352,) 0
14z 2)N
C q:p,q’p’ C 0
Yex — _
14+2-2)N afi Ofi,
1+z2) O E,. (a_a) 0 -
(I1+2z-2)N
4,79 P’
afr ofr
E’Y’real (8_1;1) 8xi,> O( _)\N)
e
(14z-2z)N
a,p,q’p’
O’Yreal — _ C
.7\ NV i 9 i/
1+-3) By (52 ) 0(c)
P p’
0] —AN
() Itz 2N
a,p,q’p’
so that we get
O‘Y ! Ov —AN .
rea — cxT O f 1 K‘
(422N (1+Z-2)N+ (=), uniformly on
Finally, using A, = C,, — BWT A;lBV, we have
Crep—BT AZl B
A7 Ycx (llczz)z\?z Yex O A O
(1+2z-2)N (Coea—BL A7L Bre) B 0 —A
0 - (142-2)N
_RT -1
C’Yreal (?lc;":)’erealB’Ycz + O(ef,\N) O(@,/\N)
Yreal —
1+2z-2)N T a1
( ) O(efx\N) - (C’Yca: ?iyizé’;?\?alBWcz) + O(ef)\N)
A+O(e™™) O(e )

so that we get

A
(1 +EE.GZZ)N T (1t - EL O(e™"), niformly on K.
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Note that each term in E, _ (det&) has m factors each of which is an element of A
and likewise for Ey,  (det§). This gives
Ey,, (det&) By (det€)
(I+z-2Nm  (14z z)Nm
Also note that we have
det A

det A’YT‘EG ’ch‘ —AN .
(I+z- 5)23\““ T (142 z)2m +O(e™"), uniformly on K.

Yex?

+ O(e™), uniformly on K.

This means that we have

E, (2 ) = 1 En,, (detl) 1 1 By, (detg)
Yreal fifm) — Tm /det Ayrml o m (f—e:;zé'Y)geﬁlm (1 + - E)Nm
1 E det
B m det A <<1:W_CQ:Z< Z)Aé;’)n +O(€_>‘N))
\/ (tz2)20m + O(e™)
1 E det
T det Ay, (]_ +z- Z)Nm
(1+Z.2)2Nm

1 EA%Z (det g)

T det A,

= E,.(Zf..s,) + O(e™*), uniformly on K.

+ O(e_’\N)
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