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1. Abstract

In this paper we study the expected density of non-real zeros of a system of real
random polynomials in several variables and critical points of a real random polynomial
in several variables. We use the Poincaré-Lelong formula to show that the expected
density of non-real zeros of random polynomial systems with real coefficients rapidly
approaches the expected density of non-real zeros in the complex coefficients case. We
use the Kac-Rice formula to prove the analogous result for critical points of a real random
polynomial in several variables.

2. Introduction

1. Expected density of zeros. Kac [Kac48] and Rice [Ric54] independently found the
expected density of zeros of a random polynomial with real standard Gaussian coeffi-
cients. Bogomolny, Bohigas, and Leboeuf ([BBL92], [BBL96]) and Hannay [Han96] have
results on the density of (and correlations between) complex zeros of random polynomials
with complex Gaussian coefficients. Edelman and Kostlan [EK95] generalize the results
for density of real (resp. complex) zeros to systems of functions in several variables when
the coefficients are real (resp. complex) Gaussian random variables.

In one variable, Shepp and Vanderbei [SV95] and Prosen [Pro96] have studied non-real
zeros of real polynomials. Shepp and Vanderbei extended Kac’s formula for the expected
density of zeros of polynomials in one real variable, in the case where the coefficients are
standard real Gaussian coefficients, to include non-real zeros of those same polynomials.
Prosen followed Hannay’s approach to show that, as the degree of the polynomials goes
to infinity, the expected density of non-real zeros of a random polynomial with real
Gaussian coefficients approaches the expected density of non-real zeros of the random
polynomials with the corresponding complex Gaussian coefficients (i.e. those complex
coefficients with the same variance). Prosen’s motivation came from quantum chaos,
and he wanted the statistics of zeros of eigenstates of 1-dim chaotic systems.

In this paper we generalize Prosen’s result on the density of non-real zeros of real ran-
dom polynomials to random polynomial systems in several variables. Consider hm,N =
(f1,N , ..., fm,N) : Cm → Cm, where fq,N is a polynomial of the form

fq,N(z) =
N∑

|J |=0

cq
J

(
N

J

)1/2

zJ ,

where cq
J is a real or complex random variable with associated measure dγ for each q.

We show that for these m independent functions in m variables, the expected density of
non-real zeros in the real coefficients case rapidly approaches the expected density in the
complex coefficients case as the degree of the polynomials gets large. In fact, we show
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that the convergence is exponential. More formally, let

dγcx =
1

πN
e−|c|

2

dc, c ∈ CDN , and

dγreal = δRDN

1

πN
e−|c|

2

dc, c ∈ CDN .

where DN =
(

N+m
m

)
and δRDN is the delta measure on RDN ⊂ CDN . Then we have the

following result.

Theorem 1.1. Let K ⊆ Cm\Rm be compact, let λz be a positive constant. Then

Eγreal
(ZhN (z)) = Eγcx(ZhN (z)) + O(e−λzN),

for all z ∈ Cm\Rm.

Here dγcx corresponds to the standard complex Gaussian coefficients case, where we
are considering

fq,N(z) =
N∑

|J |=0

cq
J

(
N

J

)1/2

zJ ,

where the cq
J ’s are standard complex Gaussian random variables, and dγreal corresponds

to the standard real Gaussian coefficients case, where we have

fq,N(z) =
N∑

|J |=0

cq
J

(
N

J

)1/2

zJ =
N∑

|J |=0

aq
J

(
N

J

)1/2

zJ ,

where cq
J = aq

J + i0 is a standard real Gaussian random variable.

We prove this result using the Poincare-Lelong formula, which is similar to that which
was used in [BSZ00a], but has the added complication that the coefficients are real. The
proof uses 2-point Szego kernel asymptotics, which still applies to the polynomials with
real coefficients because we are viewing them as functions of complex variables.

Shiffman and Zelditch [SZ99] and Bleher, Shiffman and Zelditch ([BSZ00a], [BSZ00b])
have generalized many results about random polynomials on Cm or Rm to complex
manifolds, and they have several results relating to the statistics of zeros of holomorphic
sections of powers of a line bundle over a complex manifold. In particular, in [BSZ00a]
the authors use the Poincare-Lelong formula to find a formula for density of zeros and
correlations between zeros.

2. Expected density of critical points. In [DSZ04], Douglas, Shiffman, and Zelditch
look at the critical points of a holomorphic section of a line bundles over a complex
manifold, motivated by applications in string theory. They use a generalized Kac-Rice
formula to find statistics of these critical points, namely the density of zeros and corre-
lations between zeros. In this paper, we also study critical points in the special case Cm

and generalize the result in Theorem 1 for critical points in several variables. That is,
we prove the following:
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Theorem 2.2. Let K ⊆ Cm\Rm be compact, let λz be a positive constant, and let h, γcx,
and γreal be defined as above. We have

Eγreal
(ChN (z)) = Eγcx(ChN (z)) + O(e−λzN),

for all z ∈ Cm\Rm.

The formula for Eγcx(ChN (z)) is covered by [DSZ04]. Note that finding the critical
points of h is equivalent to finding the statistics of zeros of the m partial derivatives
of h. However, it is more difficult than the zeros case above in Theorem 1 because of
the fact that the m partial derivatives are not independent random functions. This fact
makes the Poincare-Lelong method much more difficult to apply. So we use the Kac-Rice
formula to get a strong limit to further generalize Theorem 1 to critical points in several
variables, and we also get an exact formula.

3. Current and Future work. The following is a list of current work and possibilities
for future work.

(1) Non-zero mean coefficients, and applications in engineering - Rice’s orig-
inal motivation for studying zeros random polynomials was zero crossings of noisy
signals [Ric54]. Schober and Gerstacker [SG02] discussed using results on random
polynomials for the purposes of filter design. It would be interesting to me to
use my background in electrical engineering to find other applications of random
polynomials in electrical engineering, and to let problems in that and other engi-
neering fields guide my future work. These problems would likely involve random
polynomials whose coefficients are non-zero mean random variables. While some
results are known for such polynomials in one variable, the case of polynomials in
two or more variables with non-zero mean coefficients has not been well-studied.

(2) Variance - One could consider variance of the number of zeros within a region.
Shiffman and Zelditch have done this in the complex manifolds case using asymp-
totics of Szego kernels (see [SZ06a], [SZ06b], [SZ07]). We have shown a result for
variance analogous to the results regarding average zeros above, namely that the
variance of the number of zeros in a subset U of C for a real random SO(2) poly-
nomial approaches that of the complex random SU(2) polynomial as the degree
of the polynomials goes to infinity.

(3) Higher moments and asymptotic normality - We also have shown an
analagous result for higher moments, and hope to be able to show that the
random variables (Zf , φ) where φ compactly supported test function, are asymp-
totically normal. The complex coefficients case is found in [ST04].

(4) Polynomials with coefficients of different variances or distributions -
Prosen’s result was for Gaussian coefficients of arbitrary variances. One could
generalize my results for arbitrary Gaussian coefficients or non-Guassian coeffi-
cients, e.g. [Mas75], [IZ97].

4. Outline. The paper is organized as follows:
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• Section 3 - Density of zeros - One variable case .
• Section 4 - Density of critical points - One variable case .
• Section 5 - Density of zeros - Several variables case .
• Section 6 - Density of critical points - Several variables case.
• References
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3. Density of zeros in one variable

Consider the real random polynomial

fN(z) =
N∑

`=0

ã`z
`,

where the ãj’s are real independent Gaussian random variable with mean 0 and variance(
N
`

)
. Alternatively, one often writes

fN(z) =
N∑

`=0

a`

(
N

`

)1/2

z`,

where a` is a standard real Gaussian random variable. Instead, we choose to think of
the random polynomial

fN(z) =
N∑

`=0

c`

(
N

`

)1/2

z`,

where c` is a more general complex random variable with associated measure dγ. We
then consider two special cases

dγcx =
1

πN
e−|c|

2

dc, c ∈ CN+1,

dγreal = δS
1

πN
e−|c|

2

dc, c ∈ CN+1,

where δS is the delta function on S ⊂ CN+1, the set of points c = a + ib ∈ CN+1 where
b = 0 ∈ RN+1. Here dγcx corresponds to the standard complex Gaussian coefficients case,
where we are considering

fN(z) =
N∑

`=0

c`

(
N

`

)1/2

z`,

where the c`’s are standard complex Gaussian random variables, and dγreal corresponds
to the standard real Gaussian coefficients case, where we have

fN(z) =
N∑

`=0

c`

(
N

`

)1/2

z` =
N∑

`=0

a`

(
N

`

)1/2

z`,

where c` = a` + i0 is a standard real Gaussian random variable. We let E(·) denote
expectation with respect to dγreal and Eγcx(·) denote expectation with respect to dγcx.

The goal of this section is to show the following results about the density of zeros of
fN(z) using the Poincare-Lelong formula: we write

E(ZfN
(z)) = Eγcx(ZfN

(z)) + E2,N(z),

where

Eγcx(ZfN
(z)) =

N

π

1

(1 + |z|2)2
dx ∧ dy
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and E2,N(z) is some “error term,” and we show that

E2,N(z) =
∂2

∂z∂z̄
log


1 +

√
1−

∣∣∣∣
(1 + z2)N

(1 + |z|2)N

∣∣∣∣
2

 dx ∧ dy, z ∈ C,

and

E2,N(z) = O(e−λN), z ∈ C\R, λ > 0,

or, in other words,

1

N
E(ZfN

(z)) =
1

N
Eγcx(ZfN

(z)) + O(e−λN), z ∈ C\R,

and uniformly on compact sets K ⊂ C \R. We find the scaling limit of the second term
to be

lim
N→∞

1

N
E2,N(

z√
N

) =
1

π

∂2

∂z∂z̄
log


1 +

√
1−

∣∣∣∣
ez2

e|z|2

∣∣∣∣
2

 dx ∧ dy, z ∈ C\R.

Setting z = x + iy, we can write

lim
N→∞

1

N
E2,N(

z√
N

) =
1

4π

∂2

∂y2
log

(
1 +

√
1− e−4y2

)
dx ∧ dy, y 6= 0,

which after adding to 1
N

Eγcx(Zf( z√
N

)) → 1
π
, we recover Prosen’s result:

lim
N→∞

1

N
Eγreal

(Zf( z√
N

)) =
1

π

1− (4y2 + 1)e−4y2

(1− e−4y2)3/2
.

We also show that the error term goes to 0 weakly on compact sets K ⊂ C:

1

N
E2,N(z) = O(N−1), weakly on compact sets K ⊂ C,

by which we mean that for any φ ∈ C∞(K),

1

N
(E2,N(z), φ(z)) =

1

N

∫

K

E2,N(z) φ(z) dz = O(N−1).

Note that K could contain some points in R, whereas the strong convergence result
excludes points in R.

The first result was given by Prosen as mentioned, but we do it here using a different
method that we will be generalizing in later sections. The approach is similar to that
described in [BSZ00a], where they find the limit of the pair correlations of zeros of
random holomorphic sections of powers of a line bundle of a complex manifold. While
we only deal with density of zeros in this section, the condition that the coefficients aj

are real causes the method in [BSZ00a] to be useful.
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1. Pointwise limit for E(ZfN
). We write a = (a0, ..., aN) and

FN =
((N

0

)1/2

z0,

(
N

1

)1/2

z1, ...,

(
N

N

)1/2

zN
)
,

so that fN = a·FN . By the Poincare-Lelong formula, the density of the zeros of f, E(ZfN
),

satisfies

E(ZfN
) = E(

i

π
∂∂̄ log |f |) = E(

i

π
∂∂̄ log |a · F |).

We write FN(z) = ||FN(z)||uN(z), where uN(z) is a unit vector. We have

E(ZfN
) = E(

i

π
∂∂̄ log ||FN(z)||) + E(

i

π
∂∂̄ log |a · uN(z)|)

= E1,N(z) + E2,N(z)

The first term is what we want. First, note that from [BSZ00a] we can see that E1,N(z) =
Ecx(ZfN

(z)). Since F does not depend on a, we have

E1,N(z) = E(
i

π
∂∂̄ log ||FN ||)

=
i

π

∫

RN+1

∂∂̄ log ||FN ||dµ(a) =
i

π
∂∂̄ log ||FN || = i

2π
∂∂̄ log ||FN ||2

=
i

2π
∂∂̄ log

N∑

`=0

(
N

`

)
z`z̄`

=
i

2π
∂∂̄ log(1 + |z|2)N =

i

2π

∂2

∂z̄∂z
log(1 + |z|2)Ndz ∧ dz̄

=
i

2π

∂2

∂z̄∂z
N log(1 + |z|2)dz ∧ dz̄ =

i

2π
N

∂

∂z̄

z̄

(1 + |z|2)dz ∧ dz̄

=
N

2π

1

(1 + |z|2)2
i dz ∧ dz̄ =

N

2π

1

(1 + |z|2)2
i (−2i)dx ∧ dy

=
N

π

1

(1 + |z|2)2
dx ∧ dy

So we have

E(Zf ) = Eγcx(Zf ) + E2,N(z)

and we just need to show

E2,N(z) = E(
i

π
∂∂̄ log |a · uN(z)|)

=

∫

RN+1

i

π
∂∂̄ log |a · uN(z)|dµ(a) = O(e−λN).
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2. Limit of the second term. In the case that cj is a standard complex Gaussian
random variable, this second term is zero for all N (not just as N →∞). Because of the
SU(2)-invariance of the standard complex Gaussian measure, one can perform a unitary
change of variables so that u becomes (1, 0, ..., 0) and the integral

∫
CN+1 ∂∂̄ log |c ·u|dµ(c)

becomes a single integral that evaluates to 0:∫

CN+1

∂∂̄ log |c · (1, 0, ..., 0)|dµ(c) =

∫

C
∂∂̄ log |c0|dµ(c0) = 0.

In the case where aj is real, the second term is not zero for all N. Because only real
rotations can be performed, u can not be rotated to (1, 0, ..., 0), giving a single integral.
But we can still use the rotational invariance of real Gaussian measures to obtain a
double integral over R2 which is a little more manageable than the integral over RN+1.

Let u = Re u + i Im u = ( Re u1, ..., Re uN) + i( Im u1, ..., Im uN). Note that u, Re u,
and Im u depend on z and N but we frequently omit these arguments for convenience.
Since we need to do real rotations, the real and imaginary parts of u must be rotated
the same. (explain that better?). Therefore, as mentioned, we can not rotate u to (1, 0,
..., 0). However, we can rotate so that either the real part or the imaginary part of u is
of the form (r, 0, ..., 0), where r = rN(z) is some (non-zero) constant less than 1. So we
choose to perform a (real) rotation of a0, a1, ...., aN so that

ũ = Re ũ + i Im ũ = (r, 0, ..., 0) + i( Im ũ1, ..., Im ũN).

Then one can perform a rotation of the a1, ..., aN variables so that Re u is unaffected
and u becomes

(rN(z), 0, ..., 0) + i(sN(z), tN(z), 0, ..., 0)(2.1)

=(rN(z) + isN(z), itN(z), 0, ..., 0).(2.2)

Note that since u is a unit vector, and rotations preserve length, r, s, and t have the
condition r2 + s2 + t2 = 1. Note also that r, s, and t all depend on z and N but we
frequently omit these. We are now concerned with the limit of the simpler integral,

i

π

∫

RN+1

∂∂̄ log |(a0, a1, ..., aN) · (r + is, it, 0, ..., 0)| dµ(a)

=
i

π

∫

R2

∂∂̄ log |a0(r + is) + a1(it)| dµ(a0)dµ(a1)

=
i

π
∂∂̄

∫

R2

log |a0(r + is) + a1(it)| 1

2π
e−(a2

0+a2
1)/2 da0da1.

3. Formula for r. First, we know that since u(z) = F (z)
||F (z)|| , and since the length of Re u

doesn’t change from a rotation, we can write

r2 = ||Re ũ||2 = ||Re u||2 =
||Re F ||2
||F ||2 .

Note that we are assuming Im z 6= 0. We now state a fact that we will use repeatedly.

Fact 3.3. For complex numbers z and w,
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(1) ( Re z)2 = 1
2
(|z|2 + Re z2)

(2) Re z Re w = 1
2
( Re zw + Re zw̄)

(3) Re z Im w = 1
2
( Im zw − Im zw̄)

(4) Im z Re w = 1
2
( Im zw + Im zw̄)

(5) Im z Im w = 1
2
( Re zw̄ − Re zw)

Proof. (1) Special case of (2) with w = z.
(2) Let z = x + iy, w = u + iv. Then

Re zw + Re zw̄

= Re (x + iy)(u + iv) + Re (x + iy)(u− iv)

= Re (xu + ixv + iyu− yv) + Re (xu + ixv + iyu + yv) = 2xu.

(3) and (4) are proved similarly.

¤

By the fact we have ( Re z`)2 = 1
2
|z|2` + 1

2
Re z2`, which gives us

[rN(z)]2 =

N∑

`=0

(
N

`

)
( Re z`)2

N∑

`=0

(
N

`

)
|z|2`

=

N∑

`=0

(
N

`

)(
1

2
|z|2` +

1

2
Re z2`

)

N∑

`=0

(
N

`

)
|z|2`

=

N∑

`=0

(
N

`

)
1

2
|z|2`

N∑

`=0

(
N

`

)
|z|2`

+

N∑

`=0

(
N

`

)
1

2
Re z2`

N∑

`=0

(
N

`

)
|z|2`

=
1

2
+

1

2
Re

N∑

`=0

(
N

`

)
z2`

N∑

`=0

(
N

`

)
|z|2`

=
1

2
+

1

2
Re

(
1 + z2

1 + |z|2
)N

4. Formula for s. Next, we have the relationship Re ũ · Im ũ = rs, so since the angle
between Re u and Im u doesn’t change under a rotation, we have

s =
Re ũ · Im ũ

r
=

Re u · Im u

r
=

Re F
||F || · Im F

||F ||
r

=
Re F · Im F

||F ||2 · 1

r
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Using the identity Im w2 = 2 Re w Im w, for any complex number w, we can write

Re F · Im F =
(
Re

(
N
0

)1/2
z0, ..., Re

(
N
N

)1/2
zN

) · ( Im
(

N
0

)1/2
z0, ..., Im

(
N
N

)1/2
zN

)

=
N∑

`=0

Re
(

N
`

)1/2
z` Im

(
N
`

)1/2
z` =

N∑

`=0

(
N
`

)
1
2
Im z2`

=
1

2
Im

N∑

`=0

(
N
`

)
z2` = 1

2
Im (1 + z2)N

So we have

sN(z) =
1
2
Im (1 + z2)N

||F ||2 · 1

r
=

1
2
Im (1 + z2)N

(1 + |z|2)N
· 1

r

=
1

2
Im

(
1 + z2

1 + |z|2
)N

· 1

r

5. Formula for t. Since r2 + s2 + t2 = 1, we have t easily:

[tN(z)]2 = 1− [rN(z)]2 − [sN(z)]2.

6. Limits of r and its derivatives. We have

lim
N→∞

[rN(z)]2 = lim
N→∞

1

2
+

1

2
Re

(
1 + z2

1 + |z|2
)N

=
1

2
+

1

2
Re lim

N→∞

(
1 + z2

1 + |z|2
)N

Since
∣∣ 1+z2

1+|z|2
∣∣ ≤ 1 by the triangle inequality. Equality holds only when z ∈ R, so we have

that
(

1 + z2

1 + |z|2
)N

= O(e−λN), z ∈ C\R
(

1 + z2

1 + |z|2
)N

≡ 1 (for all N) , z ∈ R

which gives

[rN(z)]2 =
1

2
+ O(e−λN), z ∈ C\R

[rN(z)]2 ≡ 1, z ∈ R
As a consequence, ∂

∂z
rN(z), ∂2

∂z∂z̄
rN(z) = O(e−λN), for z ∈ C\R:
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∂

∂z̄

(
1 + z2

1 + |z|2
)N

= N

(
1 + z2

1 + |z|2
)N−1

ψ(z) = O(e−λN)

∂2

∂z∂z̄

(
1 + z2

1 + |z|2
)N

= N(N − 1)

(
1 + z2

1 + |z|2
)N−2

[ψ(z)]2 (***not quite ψ2)

+ N

(
1 + z2

1 + |z|2
)N−1

∂

∂z
ψ(z)

= O(e−λN), z ∈ C\R
where the ψ(z) is the derivative of the term inside the parentheses with respect to z̄.
Indeed, all derivatives of r are O(e−λN). Also note that all derivatives converge uniformly
on compact sets K ⊂ C \ R.

7. Limits of s, t, and their derivatives. Recall

sN(z) =
1

2
Im

(
1 + z2

1 + |z|2
)N

· 1

rN(z)
.

Since
(

1 + z2

1 + |z|2
)N

= O(e−λN), z ∈ C\R
1

rN(z)
=

1√
1/2 + O(e−λN)

, z ∈ C\R

we have that

sN(z) = O(e−λN), z ∈ C\R
for all z such that Im z 6= 0. As we had with r, the derivatives of s go to 0 exponentially
fast as well when z ∈ C\R. Since r2 + s2 + t2 = 1, and [rN(z)]2 = 1, z ∈ R, we have that

sN(z) = 0, z ∈ R

Since r2 + s2 + t2 = 1 we have t =
√

1
2

+ O(e−λN), z ∈ C\R, and uniformly on compact

sets K ⊂ C\R, as well as t ≡ 0, z ∈ R.

8. Switch to polar coordinates. We now use Jensen’s formula to evaluate the integral

i

π
∂∂̄

∫

R2

log |a0(r + is) + a1(it)| 1

2π
e−(a2

0+a2
1)/2 da0da1.

First, we switch to polar coordinates, so the integral becomes

i

2π2
∂∂̄

∫ 2π

θ=0

∫ ∞

ρ=0

log |(ρ sin θ)(r + is) + (ρ cos θ)(it)|e−ρ2/2 ρdρdθ
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We may factor out a ρ from the argument of the log and get

i

2π2
∂∂̄

∫ 2π

θ=0

∫ ∞

ρ=0

(log ρ + log |(sin θ)(r + is) + (cos θ)(it)|) e−ρ2/2 ρdρdθ

Since ∫ 2π

θ=0

∫ ∞

ρ=0

log ρe−ρ2

ρdρdθ

doesn’t depend on z, it gets killed by ∂∂̄, so we are left with

i

2π2
∂∂̄

∫ 2π

θ=0

∫ ∞

ρ=0

log |(sin θ)(r + is) + (cos θ)(it)|e−ρ2/2 ρdρdθ

The log term doesn’t depend on ρ, so we may pull that term outside the integral, and
integrate with respect to ρ to get

i

2π2
∂∂̄

∫ 2π

θ=0

log |(sin θ)(r + is) + (cos θ)(it)|
[∫ ∞

ρ=0

e−ρ2/2 ρ dρ

]
dθ

=
i

2π2
∂∂̄

∫ 2π

θ=0

log |(sin θ)(r + is) + (cos θ)(it)|
[
−e−ρ2/2

]∞
0

dθ

=
i

2π2
∂∂̄

∫ 2π

θ=0

log |(sin θ)(r + is) + (cos θ)(it)| [1] dθ

=
i

2π2
∂∂̄

∫ 2π

θ=0

log |(sin θ)(r + is) + (cos θ)(it)| dθ

9. Jensen’s Formula. Using the fact that cos θ = 1
2
(eiθ+e−iθ) and sin θ = 1

2i
(eiθ−e−iθ),

we can write

− i

2π2
∂∂̄

∫ 2π

θ=0

log
1

2
|(eiθ − e−iθ)(−i)(r + is) + (eiθ + e−iθ)it| dθ

We can bring out a log 1
2
, and since ∂∂̄ log 1

2
= 0, we have

− i

2π2
∂∂̄

∫ 2π

θ=0

log |(eiθ − e−iθ)(−ir + s) + (eiθ + e−iθ)it| dθ

We can factor out e−iθ, and since log |e−iθ| = 0, we get

− i

2π2
∂∂̄

∫ 2π

θ=0

log |(ei2θ − 1)(−ir + s) + (ei2θ + 1)it| dθ

= − i

2π2
∂∂̄

∫ 2π

θ=0

log |(s + i(t− r))ei2θ + (−s + i(t + r))| dθ
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We can now use Jensen’s formula to evaluate the inner integral. Recall that Jensen’s
formula states that, assuming φ(0) 6= 0, and φ is non-zero on ∂D(0, 1), then

1

2π

∫ 2π

θ=0

log |φ(eiθ)|dθ = log |φ(0)|+
∑

φ(wj)=0

|wj |<1

log
1

|wj| .

In our case, φ(w) = (s + i(t− r))w2 + (−s + i(t + r)) so that

φ(eiθ) = (s + i(t− r))ei2θ + (−s + i(t + r))

φ(0) = −s + i(t + r)

φ(wj) = 0 ⇐⇒ [wj(z)]2 = −−s + i(t + r)

s + i(t− r)

Note that since |φ(0)|2 = | − s + i(t + r)|2 = s2 + (t + r)2 = s2 + r2 + 2rt + t2 = 1 + 2rt,
and r and t are non-negative (by construction), φ(0) 6= 0. We show that |wj(z)|2 ≥ 1,
for all z, implying that |wj(z)| ≥ 1 and that all the zeros wj(z) of φ are outside the unit
disk for every z.

We have

|wj(z)|4 =
∣∣∣−s + i(t + r)

s + i(t− r)

∣∣∣
2

=
s2 + t2 + 2rt + r2

s2 + t2 − 2rt + r2
≥ 1

for z ∈ C since r and t are non-negative by construction. Note that the only time rt
is zero is when z ∈ R. In this case, rN(z) = 1 and sN(z) = tN(z) = 0 for all N, and
|wj(z)| = 1.

10. Exact formula for E2,N(z). So since all of the zeros of φ are outside the unit disk,
we have for z ∈ C,

1

2π

∫ 2π

θ=0

log |φ(eiθ)|dθ = log |φ(0)| = log | − s + i(t + r)|

=
1

2
log | − s + i(t + r)|2 =

1

2
log(1 + 2rt)

or

1

2π

∫
log |a0(r + is) + a1(it)|e−a2

0−a2
1da0da1 =

1

2
log(1 + 2rt),

and

E2,N(z) = − i

2π2
∂∂̄

∫
log |φ(eiθ)|dθ = − i

2π2
∂∂̄ (2π)

1

2
log(1 + 2rt)

= − i

2π
∂∂̄ log(1 + 2rt)

=
1

π

∂2

∂z∂z̄
log(1 + 2rt) dx ∧ dy, z ∈ C\R.
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After some simplification of 2rt we have

E2,N(z) =
1

π

∂2

∂z∂z̄
log


1 +

√
1−

∣∣∣∣
(1 + z2)N

(1 + |z|2)N

∣∣∣∣
2

 dx ∧ dy, z ∈ C\R.

11. Limit for E2,N(z). Since we found that r = rN(z) =
√

1
2

+ O(e−λN), t = tN(z) =√
1
2
+O(e−λN), and s = sN(z) = O(e−λN) and all derivatives (in particular, the first and

second derivatives) of r, s, and t are O(e−λN) uniformly on compact sets K ⊂ C\R, we
can say that

E2,N(z) = E(
i

π
∂∂̄ log |a · uN(z)|)

= − i

2π
∂∂̄ log(1 + 2rt) = O(e−λN), z ∈ C\R,

and uniformly on compact sets K ⊂ C\R, which is our desired result.

12. Scaling limit for E2,N(z). By the chain rule we have for any differentiable function
f(z)

∂2

∂z∂z̄
f(z)

∣∣∣
z√
N

= N
∂2

∂z∂z̄

[
f(

z√
N

)

]

So we have

1

N
E2,N(

z√
N

) =
1

Nπ

∂2

∂z∂z̄
log [1 + 2rN(z)tN(z)]

∣∣∣
z√
N

dx ∧ dy

=
1

π

∂2

∂z∂z̄
log

[
1 + 2rN(

z√
N

)tN(
z√
N

)

]
dx ∧ dy, z ∈ C\R,

and after some simplification we get

1

N
E2,N(

z√
N

) =
1

π

∂2

∂z∂z̄
log


1 +

√√√√1−
∣∣∣∣∣
(1 + ( z√

N
)2)N

(1 + | z√
N
|2)N

∣∣∣∣∣

2

 dx ∧ dy, z ∈ C\R.

We now take the limit and get

lim
N→∞

1

N
E2,N(

z√
N

) =
1

π

∂2

∂z∂z̄
log


1 +

√
1−

∣∣∣∣
ez2

e|z|2

∣∣∣∣
2

 dx ∧ dy, z ∈ C\R.

Setting z = x + iy, we can write

lim
N→∞

1

N
E2,N(

z√
N

) =
1

4π

∂2

∂y2
log

(
1 +

√
1− e−4y2

)
dx ∧ dy, y 6= 0,
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and after simplification and adding to 1
N

E1,N( z√
N

) → 1
π
, we recover Prosen’s result

in [Pro96]:

lim
N→∞

1

N
Eγreal

(Zf( z√
N

)) =
1

π

1− (4y2 + 1)e−4y2

(1− e−4y2)3/2
.

13. Weak limit for E2,N(z). Let K ⊂ C be a compact set. Note that unlike before,
we are including points on the real line. We now show that 1

N
E2 goes to 0 weakly on K.

More specifically, we show that for any φ ∈ C∞(K),

1

N
(E2,N(z), φ(z)) =

1

N

∫

K

E2,N(z) φ(z) dz = O(N−1).

Recall that E2,N(z) = E(
i

π
∂∂̄ log |a · uN(z)|) By the definition of the expectation of a

distribution, we have

(E2,N(z), φ(z)) =

(
E(

i

π
∂∂̄ log |a · uN(z)|) , φ(z)

)

= E

(
i

π
∂∂̄ log |a · uN(z)| , φ(z)

)

By the definition of the derivative of a distribution, we have

E

(
i

π
∂∂̄ log |a · uN(z)| , φ(z)

)
= E

(
log |a · uN(z)| , i

π
∂∂̄φ(z)

)

By the definition of a distribution, we have that this term equals

E

(∫

K

log |a · uN(z)| i

π
∂∂̄φ(z)

)
.

Recall that E denotes expectation with respect to the Gaussian measure dµ(a). We then
have by definition of expected value that this equals

∫

RN

(∫

K

log |a · uN(z)| i

π
∂∂̄φ(z)

)
dµ(a).

Since the integrand is bounded, and since φ(z) does not depend on a, we can switch
the order of the integrals and get

∫

K

(∫

RN
log |a · uN(z)| dµ(a)

)
i

π
∂∂̄φ(z).

Recall that by our calculation above we have that the inner integral is 1
2
log(1 + 2rt),

so we have∫

K

(∫

RN
log |a · uN(z)| dµ(a)

)
i

π
∂∂̄φ(z) =

∫

K

i

2π
log(1 + 2rt) ∂∂̄φ(z)
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Recall also that rN(z) and tN(z) are both non-negative by construction, and both are
bounded by 1 since r2+s2+t2 = 1. Both of these conditions are true even on the real line,
where rN = 0 and tN = 0 for all N. This implies the crude estimate 1 ≤ (1 + 2rt) ≤ 3,
everywhere on C and, in particular, on K. Since φ ∈ C∞(K), we can write

∫

K

i

2π
log(1 + 2rt) ∂∂̄φ(z) ≤

∫

K

C
i

π
∂∂̄φ(z),

= C|| i
π

∂∂̄φ(z)||L1(K)

where C is independent of N, K, and z, including z on the real line, and the L1 norm
|| i

π
∂∂̄φ(z)||L1(K) depends only on K. So then we have that

(E2,N(z), φ(z)) ≤ CK

where CK is a constant which depends only on K. We now have want we want:

1

N
(E2,N(z), φ(z)) ≤ 1

N
CK = O(N−1).

Note that when we consider compact sets K that include part of the real line, the weak
limit is the only result we have. This is because the derivatives of r, s, t, and therefore
E2 blow up near the real line. When we find the weak limit and move the ∂∂̄ from the
log term to the φ term as we did above, we avoid this problem: only the derivatives of
r and t blow up near the real line, not the values of the functions themselves.
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4. Density of critical points in one variable

In this section we study the density of critical points of

hN(z) =
N∑

`=0

a`

(
N

`

)1/2

z`,

where the aj’s are real independent standard Gaussian random variables. This corre-
sponds to the zeros of

fN(z) =
∂h

∂z
=

N∑

`=0

a`

(
N

`

)1/2
∂

∂z
z`.

The goal of this section is to show the following results about the density of critical using
the Poincare-Lelong formula: we write

E(CfN
(z)) = Eγcx(CfN

(z)) + E2,N(z).

(1) We show that

1

N
Eγcx(CfN

(z)) =
1

π

(
1

(1 + |z|2)2
− 2

N(1 + |z|2)2
+

1

(1 + N |z|2)2

)
dx ∧ dy,

so that

1

N
Eγcx(CfN

(z)) =
1

π

1

(1 + |z|2)2
dx ∧ dy + O(N−1), z 6= 0

1

N
Eγcx(CfN

(z)) =
2

π
dx ∧ dy + O(N−1), z = 0.

(2) We also show that

E2,N(z) = ∂∂̄ log


1 +

√
1−

∣∣∣∣
(N2z2 + N)(1 + z2)N−2

(N2|z|2 + N)(1 + |z|2)N−2

∣∣∣∣
2



= O(e−λN), z ∈ C\R, λ > 0,

so that

E(CfN
(z)) = Eγcx(CfN

(z)) + O(e−λN), z ∈ C\R,

and uniformly on compact sets K ⊂ C\R, giving

E(CfN
(z)) =

1

π

1

(1 + |z|2)2
dx ∧ dy + O(N−1), z ∈ C\R.

Note that we get the same limit 1
π

1
(1+|z|2)2

that we did for the density of zeros,

but the rate of convergence O(N−1) is slower than the rate O(e−λN) that we got
for the density of zeros. We still have that E(Ch) approaches Eγcx exponentially
fast, but Eγcx is now only asymptotically equal to the limit 1

π
1

(1+|z|2)2
.
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(3) We find the following scaling limits:

1

N
Eγcx(CfN

)(
z√
N

) =
1

N
E1,N(

z√
N

) = 1 +
1

(1 + |z|2)2
+ O(N−1), z ∈ C

lim
N→∞

1

N
E2,N(

z√
N

) =
1

π

∂2

∂z∂z̄
log


1 +

√
1−

∣∣∣∣
(1 + z2)ez2

(1 + |z|2)e|z|2
∣∣∣∣
2

 dx ∧ dy, z ∈ C

(4) Finally, we show that the error term E2,N(z) goes to 0 weakly on compact sets
K ⊂ C (including points in R):

1

N
E2,N(z) = O(N−1), weakly on compact sets K ⊂ C,

by which we mean that for any φ ∈ C∞(K),

1

N
(E2,N(z), φ(z)) =

1

N

∫

K
E2,N(z) φ(z) dz = O(N−1).

The proofs are very similar to the density of zeros in one variable case, so we will leave
out some of the details.

1. Application of the Poincare-Lelong formula. We write a = (a0, ..., aN) and

F = FN(z) =
(
0,

(
N

1

)1/2
∂

∂z
z1,

(
N

2

)1/2
∂

∂z
z2, ...,

(
N

N

)1/2
∂

∂z
zN

)
,

so that fN = a ·FN . By the Poincare-Lelong formula, the density of the zeros of f, E(Zf ),
satisfies

E(CfN
) = E(

i

2π
∂∂̄ log |fN |2) = E(

i

2π
∂∂̄ log |a · FN |2)

= E(
i

2π
∂∂̄ log ||FN(z)||2) + E(

i

π
∂∂̄ log |a · uN(z)|)

= E1,N(z) + E2,N(z),

where u = uN(z) = FN (z)
||FN (z)|| .

The first term is a known result. First, from [BSZ00a] and the section on density of
zeros in one variable, we have that E1,N(z) = Eγcx(CfN

). Next, recall that FN(z) =
∂
∂z

HN(z), so we have

||FN ||2 = || ∂

∂z
HN(z)||2 =

∂

∂z
HN(z)

∂

∂z̄
H(z)

and since H(z) is holomorphic, this equals

∂

∂z

∂

∂z̄
HN(z)HN(z) =

∂2

∂z∂z̄
||HN(z)||2.

A quick calculation gives

||FN ||2 =
∂2

∂z∂z̄
||HN(z)||2 = N(1 + |z|2)N−2(1 + N |z|2)
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Using this formula, we get

1

N
E1,N(z) =

1

N
Eγcx(CfN

)

=
1

N
E(

i

2π
∂∂̄ log ||FN(z)||2) =

i

2π

1

N

(
N − 2

(1 + |z|2)2
+

N

(1 + N |z|2)2

)
dz ∧ dz̄

=
1

π

(
1

(1 + |z|2)2
− 2

N(1 + |z|2)2
+

1

(1 + N |z|2)2

)
dx ∧ dy

Note that

1

π

(
− 2

N(1 + |z|2)2
+

1

(1 + N |z|2)2

)
dx ∧ dy = O(N−1), z 6= 0

So we have that

1

N
E1,N(z) =

1

N
Eγcx(CfN

) =
1

π

1

(1 + |z|2)2
dx ∧ dy + O(N−1), z 6= 0

We remark that when z = 0,

1

N
E1,N(z) =

1

π

(
1

(1 + |z|2)2
− 2

N(1 + |z|2)2
+

1

(1 + N |z|2)2

)
dx ∧ dy

=
1

π

(
2− 2

N(1 + |z|2)2

)
dx ∧ dy =

1

π

(
2− 2

N

)
dx ∧ dy

and

1

N
E1,N(z) =

2

π
dx ∧ dy + O(N−1), z = 0

So we have so far that

E(CfN
) =

1

π

1

(1 + |z|2)2
dx ∧ dy + O(N−1) + E2,N(z)

and it reamins to show that

E2,N(z) =
i

π
E(∂∂̄ log |a · uN(z)|) = O(e−λN), z ∈ C\R.

2. Scaling limit for Eγcx(CfN
). We have

1

N
Eγcx(CfN

)(
z√
N

) =
1

N
E1,N(

z√
N

) = 1 +
1

(1 + |z|2)2
+ O(N−1), z ∈ C.
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3. Pointwise Limit of E2,N(z). By the definition of expected value,

E2,N(z) =
i

π

∫

RN+1

∂∂̄ log |a · uN(z)|dµ(a).

As in the density of zeros case, we can perform rotations of a0, ..., aN and then a1, . . . , aN

so that we have

E2,N(z) =
i

π

∫

RN+1

∂∂̄ log |(a0, a1, ..., aN) · (rN(z) + isN(z), itN(z), 0, ..., 0)| dµ(a)

=
i

π

∫

R2

∂∂̄ log |a0(r + is) + a1(it)| dµ(a0)dµ(a1),

which is of the same form as we had in the zeros case. The formulas r = rN(z), s = sN(z),
and t = tN(z) are different here in the critical points case than they were in the zeros
case, but the formulas are similar and a simple fact will show that we still have the same
asympotic results, namely, for z ∈ C\R,

[rN(z)]2 =
1

2
+ O(e−λN),

sN(z) = O(e−λN),

[tN(z)]2 =
1

2
+ O(e−λN),

and for z ∈ R,

[rN(z)]2 ≡ 1 (for all N) ,

sN(z) ≡ 0 (for all N) ,

[tN(z)]2 ≡ 0 (for all N) .

4. Formula for rN(z). Recall that have

[rN(z)]2 =
|Re FN(z)|2
|FN(z)|2 .

Also, recall that ( Re z)2 = 1
2
|z|2 + 1

2
z2, so that we have

( Re zk−1)2 =
1

2
|z|2(k−1) +

1

2
Re z2(k−1).
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This fact gives

[rN(z)]2 =

N∑

`=0

(
N

`

)(
Re

∂

∂z
z`

)2

N∑

`=0

(
N

`

)(
∂

∂z
z`

)(
∂

∂z̄
z̄`

) =

N∑

`=0

(
N

`

) [
1

2

∣∣∣∣
∂

∂z
z`

∣∣∣∣
2

+
1

2
Re

(
∂

∂z
z`

)2
]

N∑

`=0

(
N

`

)(
∂

∂z
z`

)(
∂

∂z̄
z̄`

)

=
1

2
+

1

2
Re

N∑

`=0

(
N

`

)(
∂

∂z
z`

)(
∂

∂z
z`

)

N∑

`=0

(
N

`

)(
∂

∂z
z`

)(
∂

∂z̄
z̄`

) .

We state a brief fact. It will be more general than what we need here, but the more
general form will be used later when we do the several variables case.

Fact 4.4. For complex numbers z, w, z̃, and w̃, we have the following:

(1)
∑N

`1+`2=0

(
N

`1,`2

)
( ∂

∂z
z`1w`2)( ∂

∂z̃
z̃`1w̃`2) = [N2zz̃ + N(1 + ww̃)](1 + zz̃ + ww̃)N−2

(2)
∑N

`1+`2=0

(
N

`1,`2

)
( ∂

∂w
z`1w`2)( ∂

∂w̃
z̃`1w̃`2) = [N2ww̃ + N(1 + zz̃)](1 + zz̃ + ww̃)N−2

(3)
∑N

`1+`2=0

(
N

`1,`2

)
( ∂

∂z
z`1w`2)( ∂

∂w̃
z̃`1w̃`2) = (N2 −N)z̃w(1 + zz̃ + ww̃)N−2

(4)
∑N

`1+`2=0

(
N

`1,`2

)
( ∂

∂w
z`1w`2)( ∂

∂z̃
z̃`1w̃`2) = (N2 −N)zw̃(1 + zz̃ + ww̃)N−2

Proof. See Appendix.

We use (1) with w = w̃ = 0, and we evaluate at z̃ = z to get

N∑

`=0

(
N

`

) (
∂

∂z
z`

) (
∂

∂z
z`

)
= (N2z2 + N)(1 + z2)N−2

and we use (1) with w = w̃ = 0, and we evaluate at z̃ = z̄ to get

N∑

`=0

(
N

`

) (
∂

∂z
z`

) (
∂

∂z̄
z̄`

)
= (N2|z|2 + N)(1 + |z|2)N−2

So we have

[rN(z)]2 =
1

2
+

1

2
Re

[N2z2 + N ](1 + z2)N−2

[N2|z|2 + N ](1 + |z|2)N−2
=

1

2
+ O(e−λN), for z ∈ C\R,

and uniformly on compact sets K ⊂ C\R, and

[rN(z)]2 ≡ 1, z ∈ R.
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5. Formula for sN(z). Next, recall that

sN(z) =
Re uN(z) · Im uN(z)

rN(z)
=

Re FN(z) · Im FN(z)

||FN(z)||2 · 1

rN(z)

Using the identity Im w2 = 2 Re w Im w, for any complex number w (Fact ???), we can
write

Re FN(z) · Im FN(z) =
N∑

`=0

Re

[(
N

`

)1/2
∂

∂z
z`

]
Im

[(
N

`

)1/2
∂

∂z
z`

]

=
N∑

`=0

(
N

`

)
1

2
Im

(
∂

∂z
z`

)2

=
1

2
Im

N∑

`=0

(
N

`

)(
∂

∂z
z`

)(
∂

∂z
z`

)

=
1

2
Im

[
(N2z2 + N)(1 + z2)N−2

]
,

using the Fact again. We have

sN(z) =
1
2
Im

[
(N2z2 + N)(1 + z2)N−2

]

||F ||2 · 1

rN(z)

=
1

2
Im

[
(N2z2 + N)(1 + z2)N−2

(N2|z|2 + N)(1 + |z|2)N−2

]
· 1

rN(z)

=
1

2
Im

[
N2z2 + N

N2|z|2 + N

(
1 + z2

1 + |z|2
)N−2

]
· 1

rN(z)
= O(e−λN), for z ∈ C\R,

and

sN(z) ≡ 0, z ∈ R.

6. Formula for t. Since r2 + s2 + t2 = 1, we have t easily:

[tN(z)]2 = 1− [rN(z)]2 − [sN(z)]2 =

√
1

2
+ O(e−λN), z ∈ C\R,

and uniformly on compact sets K ⊂ C\R, and

t ≡ 0, z ∈ R.

Also, note that all derivatives of rN(z), sN(z) and tN(z) are O(e−λN) and that all
derivatives converge uniformly on compact sets K ⊂ C\R.
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7. Exact Formula for E2,N(z). Recall that

E2,N(z) =
i

π

∫

R2

∂∂̄ log |a0(r + is) + a1(it)| dµ(a0)dµ(a1),

and note that it is of the same form as the formula for E2,N(z) in the zeros case. The only
difference is the formulae for r, s, and t. If we can write our integral in polar coordinate
and use Jensen’s formula the same way as before, we get that

E2,N(z) = − i

2π
∂∂̄ log(1 + 2rt) =

1

π

∂2

∂z∂z̄
log(1 + 2rt) dx ∧ dy.

After further simplification of 2rt, we have that

E2,N(z) =
1

π

∂2

∂z∂z̄
log


1 +

√
1−

∣∣∣∣
(N2z2 + N)(1 + z2)N−2

(N2|z|2 + N)(1 + |z|2)N−2

∣∣∣∣
2

 dx ∧ dy.

8. Limit for E2,N(z). Though we got different formulas for r, s, and t, we still had that

r = rN(z) =
√

1
2
+ O(e−λN), t = tN(z) =

√
1
2
+ O(e−λN), and s = sN(z) = O(e−λN) and

all derivatives (in particular, the first and second derivatives) of r, s, and t are O(e−λN)
on compact sets K ⊂ C\R. So we can still say that

E2,N(z) = − i

2π
∂∂̄ log(1 + 2rt) = O(e−λN)

on compact sets K ⊂ C\R, which is our desired result.

9. Scaling limit for E2,N(z). We have

lim
N→∞

1

N
E2,N(

z√
N

) =
1

π

∂2

∂z∂z̄
log


1 +

√
1−

∣∣∣∣
(1 + z2)ez2

(1 + |z|2)e|z|2
∣∣∣∣
2

 dx ∧ dy, z ∈ C

10. Weak limit for E2,N(z). Let K ⊂ C be a compact set. We now show that 1
N

E2

goes to 0 weakly on K. More specifically, we show that for any φ ∈ C∞(K),

1

N
(E2,N(z), φ(z)) =

1

N

∫

K
E2,N(z) φ(z) dz = O(N−1).

We have shown that

(E2,N(z), φ(z)) =

∫

K

(∫

RN
log |a · uN(z)| dµ(a)

)
i

π
∂∂̄φ(z) dz

=

∫

K

(
1

2
log(1 + 2rt)

)(
i

π
∂∂̄φ(z)

)
dz

In the zeros case, we used the fact that 1 ≤ (1 + 2rt) ≤ 3, everywhere on C and, in
particular, on K. Here, r and t are different, but we still have that both are non-negative
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by construction, and both are bounded by 1 since r2 + s2 + t2 = 1. So we still have the
rough bound 1 ≤ (1 + 2rt) ≤ 3, and we therefore have

∫

K

(
1

2
log(1 + 2rt)

)(
i

π
∂∂̄φ(z)

)
dz ≤

∫

K
C

i

π
∂∂̄φ(z) dz,

= C|| i
π

∂∂̄φ(z)||L1(K) ≤ CK ,

where CK is independent of z and N and depends only on K. We now have want we
want:

1

N
(E2,N(z), φ(z)) ≤ 1

N
CK = O(N−1).
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11. Appendix-Proof of Fact.

Proof. We prove just (1) and (3).

(1)

N∑

`1+`2=0

(
N

`1, `2

)
(

∂

∂z
z`1w`2)(

∂

∂z̃
z̃`1w̃`2) =

∂

∂z

∂

∂z̃

N∑

`1+`2=0

(
N

`1, `2

)
z`1w`2 z̃`1w̃`2

=
∂

∂z

∂

∂z̃
(1 + zz̃ + ww̃)N =

∂

∂z
N(1 + zz̃ + ww̃)N−1z

= N(N − 1)(1 + zz̃ + ww̃)N−2zz̃ + N(1 + zz̃ + ww̃)N−1

= N2(1 + zz̃ + ww̃)N−2zz̃ −N(1 + zz̃ + ww̃)N−2zz̃ + N(1 + zz̃ + ww̃)N−2(1 + zz̃ + ww̃)

= N2(1 + zz̃ + ww̃)N−2zz̃ + N(1 + zz̃ + ww̃)N−2(1 + ww̃)

= [N2zz̃ + N(1 + ww̃)](1 + zz̃ + ww̃)N−2

(2) Similar to (1).
(3)

N∑

`1+`2=0

(
N

`1, `2

)
(

∂

∂z
z`1w`2)(

∂

∂w̃
z̃`1w̃`2) =

∂

∂z

∂

∂w̃

N∑

`1+`2=0

(
N

`1, `2

)
z`1w`2 z̃`1w̃`2

=
∂

∂z

∂

∂w̃
(1 + zz̃ + ww̃)N =

∂

∂z
N(1 + zz̃ + ww̃)N−1w

= N(N − 1)(1 + zz̃ + ww̃)N−2z̃w

(4) Similar to (3).



27

5. Density of zeros - m variables case

In this section we are concerned with the zeros of hm,N = (f1,N , ..., fm,N) : Cm → Cm,
where fq,N is a polynomial of the form

fq,N(z) =
N∑

|J |=0

aq
J

(
N

J

)1/2

zJ

where aq
J is a real standard Gaussian random variable, and where we use the following

multi-index notation:

z = (z1, ..., zm)

|J | = j1 + · · ·+ jm

aq
J = aq

j1...jm
∈ R(

N

J

)
=

(
N

j1, ..., jm

)
=

N !

(N − j1 − ...− jm)!j1! ... jm!

zJ = zj1
1 ...zjm

m .

Instead, we choose to think of the random polynomials

fq,N(z) =
N∑

|J |=0

cq
J

(
N

J

)1/2

zJ ,

where cq
J is a more general complex random variable with associated measure dγ for each

q. We then consider two special cases

dγcx =
1

πN
e−|c|

2

dc, c ∈ CDN , DN =

(
N + m

m

)

dγreal = δS
1

πN
e−|c|

2

dc, c ∈ CDN ,

where δS is the delta function on S ⊂ CDN , the set of points c = a + ib ∈ CDN where
b = 0 ∈ RDN . Here dγcx corresponds to the standard complex Gaussian coefficients case,
where we are considering

fq,N(z) =
N∑

|J |=0

cq
J

(
N

J

)1/2

zJ ,

where the cq
J ’s are standard complex Gaussian random variables, and dγreal corresponds

to the standard real Gaussian coefficients case, where we have

fq,N(z) =
N∑

|J |=0

cq
J

(
N

J

)1/2

zJ =
N∑

|J |=0

aq
J

(
N

J

)1/2

zJ ,

where cq
J = aq

J + i0 is a standard real Gaussian random variable. We let E(·) denote
expectation with respect to dγreal and Eγcx(·) denote expectation with respect to dγcx.
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Let K ⊆ Cm\Rm be compact, and let λ be a positive constant. The goal of this section
is to show the following results about the density of zeros of hN using the Poincare-Lelong
formula: we write

E(ZhN
)(z) = Eγcx(ZhN

)(z) + ẼN(z)dω

where

Eγcx(ZhN
)(z) =

mNm

πm

1

(1 + ||z||2)m+1
dω,

where

dω = dx1 ∧ dy1 . . . ∧ dxm ∧ dym,

||z||2 = |z1|2 + · · · + |zm|2, and ẼN(z) is some “error” term. We give an exact formula
for ẼN(z), and show that it goes to zero rapidly, i.e.,

ẼN(z) = O(e−λN), z ∈ Cm\Rm, and uniformly on K,

so that we have

E(ZhN
)(z) = Eγcx(ZhN

)(z) + O(e−λN), z ∈ Cm\Rm, and uniformly on K

and,

1

Nk
E(ZhN

)(z) =
k

πm

1

(1 + |z|2)m+1
dω + O(e−λN), z ∈ Cm\Rm, and uniformly on K.

In other words, at any point away from Rm, the expected density of zeros in the real
coefficients case approaches the expected density of zeros in the complex coefficients case
as N gets large.

We also give a formula for the scaling limit of ẼN(z), which we denote Ẽ∞(z), and
show that as | Im z| → ∞, Ẽ∞(z) → 0. In words, the scaled density of zeros in the real
coefficients case approaches the scaled density of zeros in the complex coefficients case
as you move far away from Rm.

We follow the proof in the one and two variable case and begin by writing

aq = (aq
0,...,0, ..., a

q
J , ..., aq

0,...,0,N) ∈ RDN

Fq,N(z) = FN(z) =
(( N

0, ..., 0

)1/2

, ...,

(
N

J

)1/2

zJ , ...,

(
N

0, ..., 0, N

)1/2

z0
1 ...z

N
m

) ∈ RDN

where DN =
(

N+m
m

)
, so that we can write fq,N = aq · Fq,N = aq · FN .

By the Poincare-Lelong formula, we have

E(Zf1(z)× ...× Zfm(z)) = E(
i

2π
∂∂̄ log |f1|2 ∧ ... ∧ i

2π
∂∂̄ log |fm|2)

= E
[(

i

2π

)m (
∂∂̄ log |a1 · F |2 ∧ ... ∧ ∂∂̄ log |am · F |2

)]
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which we can write more succinctly as

=

(
i

2π

)m

E
( m∧

q=1

∂∂̄ log
∣∣aq · F

∣∣2
)
.

Writing F = F
||F || ||F || and u = F

||F || , we can write this as

(
i

2π

)m

E
( m∧

q=1

∂∂̄ log
∣∣aq · F

||F || ||F ||
∣∣2

)

=

(
i

2π

)m

E
[ m∧

q=1

(
∂∂̄ log ||F ||2 + ∂∂̄ log |aq · u|2)

]

Since ∂∂̄ log ||F ||2 + ∂∂̄ log |aq · u|2 is independent of a` for l 6= q, then by a lemma in SZ
[???] we can write this term as

(
i

2π

)m m∧
q=1

E
[
∂∂̄ log ||F ||2 + ∂∂̄ log |aq · u|2

]

=

(
i

2π

)m m∧
q=1

(
∂∂̄ log ||F ||2 + E

[
∂∂̄ log |aq · u|2

])
.

At this point, we could find the large N limit; we have essentially reduced the m-variables

case to the same calculation as the 1-variable case, namely showing that E
[
∂∂̄ log |aq ·u|2

]

is O(e−λN). If this term is indeed O(e−λN), then all but one term in the wedge product
goes to zero exponentially fast. Since we want an exact formula for the density of zeros,
we delay the proof of the large N limit, and we first work out the details of writing an
exact formula more explicitly. From that formula, the large N limit and the scaling limit
will follow easily.

We write

(
i

2π

)m

E
[ m∧

q=1

(
∂∂̄ log ||F ||2 + ∂∂̄ log |aq · u|2)

]
=(E1,N(z) + E2,N(z) + ... + E2m,N(z))dω
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where

E1,N(z)dω :=

(
i

2π

)m

E
(
∂∂̄ log ||F ||2 ∧ ∂∂̄ log ||F ||2 ∧ ... ∧ ∂∂̄ log ||F ||2

)

E2,N(z)dω :=

(
i

2π

)m

E
(
∂∂̄ log |a1 · u| ∧ ∂∂̄ log ||F ||2 ∧ ... ∧ ∂∂̄ log ||F ||2

)

...

E2m,N(z)dω :=

(
i

2π

)m

E
(
∂∂̄ log |a1 · u| ∧ ∂∂̄ log |a2 · u| ∧ ... ∧ ∂∂̄ log |am · u|

)

We look at these 2m terms and we claim that only the first term is non-zero in the limit.
The first term is known:

E1,N(z)dω = E(ZhN
) =

(
i

2π

)m

E
(
∂∂̄ log ||F ||2 ∧ ∂∂̄ log ||F ||2 ∧ ... ∧ ∂∂̄ log ||F ||2

)

=
mNm

πm

1

(1 + |z1|2 + ... + |zm|2)m+1
dω =

mNm

πm

1

(1 + ||z||2)m+1
dω

1. The remaining terms. We know show that the remaining terms E2, ..., E2m are
O(e−λN). Consider the i-th term, Eq. This term is of the form

Eq,N(z)dω = E(∂∂̄φq
1 ∧ ... ∧ ∂∂̄φq

m)

where φq
l,N(z) is either log ||FN(z)|| or log |a` ·uN(z)| for each `. For example, for E2,N(z)

we have φ2
1 = log |a1 · u| and φ2

` = log ||FN(z)|| for 1 < ` ≤ k. Writing out the wedge
product we get

Eq,N(z) = E

[∑
σ,τ

(−1)σ+τ

(
∂2

∂zσ(1)∂z̄τ(1)

φq
1

)
· · ·

(
∂2

∂zσ(m)∂z̄τ(m)

φq
m

) ]

where the sum is over all permutations σ and τ of {1, 2, ...,m}, and where (−1)σ denotes
the sign associated to the permutation σ. Since the sum is finite, we can write

Eq,N(z) =
∑
σ,τ

(−1)σ+τE

[(
∂2

∂zσ(1)∂z̄τ(1)

φq
1

)
· · ·

(
∂2

∂zσ(m)∂z̄τ(m)

φq
m

) ]

or

Eq,N(z) =
∑
σ,τ

(−1)σ+τEσ,τ
q,N(z)

where Eσ,τ
q,N(z) := E

[
m∏

`=1

(
∂2

∂zσ(`)∂z̄τ(`)

φq
`(z)

) ]
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To simplify notation even more, let

D` =
∂2

∂zσ(`)∂z̄τ(`)

so that we have

Eσ,τ
q,N(z) = E

[
m∏

`=1

D`φ
q
`(z)

]

Now, note that φq
`(z) does not depend on all of a1, ..., am, but only depends at most

on a`. (If φq
`(z) = log ||FN(z)||, then it doesn’t depend on a` either.) So because φq

`(z) is
independent of a`′ for all `′ 6= `, we will write this integral over RDN × · · · × RDN as a
product of integrals over RDN . To do this, we first let

Lq = {` : φq
` is of the form log ||FN(z)||} ⊂ {1, . . . , m}

and
L′q = {` : φq

` is of the form log |a` · uN(z)|} = {1, . . . ,m}\L.

We can now we split the product to get

Eσ,τ
q,N(z) = E

[(∏

`∈L

D`φ
q
`(z)

)(∏

`∈L′
D`φ

q
`(z)

)]

= E

[(∏

`∈L

D` log ||FN(z)||
)(∏

`∈L′
D` log |a` · uN(z)|

)]

By the definition of expected value, we have

Eσ,τ
q,N(z) =

∫

RDN

[(∏

`∈L

D` log ||FN(z)||
)(∏

`∈L′
D` log |a` · uN(z)|

)]
dµ(a1) · · · dµ(am),

Note that the first product is independent of a` for all ` ∈ L′, and the second product is
independent of all ` ∈ L, so we can write Eσ,τ

q,N(z) as
[∫

R|L|DN

∏

`∈L

D` log ||FN(z)||dµ(a`)

][∫

R|L′|DN

∏

`∈L′
D` log |a` · uN(z)| dµ(a`)

]

The first product is also independent of a` for all ` ∈ L, and since
∫
RDN

dµ(a`) = 1, we
have for the first integral ∏

`∈L

D` log ||FN(z)||

Even more, the `-th factor in the second product depends only on ` and is therefore
independent of all `′ ∈ L′ not equal to `. So the integral of this product becomes a
product of the integrals:

∏

`∈L′

∫

RDN

D` log |a` · uN(z)| dµ(a`)
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and we can switch the derivatives and the integral to get
∏

`∈L′
D`

∫

RDN

log |a` · uN(z)| dµ(a`).

Putting everything together we have

Eσ,τ
q,N(z) =

[∏

`∈L

D` log ||FN(z)||
][∏

`∈L′
D`

∫

RDN

log |a` · uN(z)| dµ(a`)

]

Now, consider the integral ∫

RDN

log |a` · uN(z)| dµ(a`).

Note that the form of the integral is the same as what we got in the one variable case, so
we proceed in a similar manner. We rotate (a0···0, ..., a0···0N) and then (a10···0, ..., a0···0N)
so that the integral becomes∫

RDN

log |a` · (r + is, it, 0, ..., 0)| dµ(a`) =

∫

R2

log |a0···0(r + is) + a10···0it| dµ(a0···0) dµ(a10···0)

where r = rN(z), s = sN(z), and t = tN(z).

We have similar formulae and large N limits for r, s, and t:

[rN(z)]2 =
1

2
+

1

2
Re

(
1 + z2

1 + · · ·+ z2
m

1 + |z1|2 + · · ·+ |zm|2
)N

=
1

2
+ O(e−λN), z ∈ Cm\Rm, and uniformly on K

sN(z) =
1

2
Im

(
1 + z2

1 + · · ·+ z2
m

1 + |z1|2 + · · ·+ |zm|2
)N

1

rN(z)
= O(e−λN), z ∈ Cm\Rm, and uniformly on K

[tN(z)]2 = 1− [rN(z)]2 − [sN(z)]2 =
1

2
+ O(e−λN), z ∈ Cm\Rm, and uniformly on K.

Also, all derivatives of r, s and t are O(e−λN) uniformly on K.

2. Exact formula for ẼN(z). By the calculation we did before, we can write
∫

R2

log |a0···0(r + is) + a10···0it| dµ(a0···0) dµ(a10···0) =
1

2
log(1 + 2rt),

which gives us

Eσ,τ
q,N(z) =

[∏

`∈L

D` log ||FN(z)||
][∏

`∈L′
D`

1

2
log(1 + 2rt)

]

Further simplification gives

Eσ,τ
q,N(z) =

[∏

`∈L

D`
1

2
log(1 + ||z||2)N

]
∏

`∈L′
D`

1

2
log


1 +

√
1−

∣∣∣∣
(1 + z · z)N

(1 + ||z||2)N

∣∣∣∣
2





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where we use the notation z · z = z2
1 + · · ·+ z2

m, ||z||2 = |z1|2 + · · ·+ |zm|2. Finally,

Eq,N(z) =
∑
σ,τ

(−1)σ+τEσ,τ
q,N(z)

and

ẼN(z) =
2m∑
q=2

Eq,N(z).

3. Large N limit for ẼN(z). All derivatives of log ||F || are bounded. Next, r =

rN(z) =
√

1
2

+ O(e−λN), t = tN(z) =
√

1
2

+ O(e−λN), and s = sN(z) = O(e−λN) and

all derivatives (in particular, the first and second derivatives) of r, s, and t are O(e−λN)
on Cm\Rm. So we can say that all second derivatives of log(1 + 2rt) are O(e−λN) on
Cm\Rm. This means that

Eσ,τ
q,N(z) = O(e−λN), z ∈ K.

Since this is true for each i, σ, and τ, we have

ẼN(z) =
2m∑
q=2

∑
σ,τ

(−1)σ+τEσ,τ
q,N(z) = O(e−λN), z ∈ K.

4. Scaling limit for ẼN(z). We have

1

Nk
Eσ,τ

q,N(
z√
N

) → Eσ,τ
q,∞(z) :=

[∏

`∈L

D`||z||2
] 

∏

`∈L′
D`

1

2
log


1 +

√
1−

∣∣∣∣
ez·z

e||z||2

∣∣∣∣
2






where we use the notation z · z = z2
1 + · · · + z2

m, ||z||2 = |z1|2 + · · · + |zm|2. If we write
z = x + iy, then z · z = |x|2 + 2i(x · y) + |y|2. Since |e2i(x·y)| = 1, we can write the second
product as

∏

`∈L′
D`

1

2
log

(
1 +

√
1− e−4|y|2

)

Since the first product is bounded (it is either 1 or 0 for each `, depending on σ(`) and
τ(`)), and the second product goes to zero exponentially fast as |y| → ∞, we have

Eσ,τ
q,∞(z) → 0, as |y| → ∞.

Since this is true for each i, σ, and τ we have

Ẽ∞(z) =
2m∑
q=2

∑
σ,τ

(−1)σ+τEσ,τ
q,∞(z) → 0, as |y| → ∞.
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5. Exact formula and Scaling limit for the 2 variable case. When m = 2, the
formulas for the density of zeros and the scaling limit of the density of zeros are simple
enough to be written as a sum of 3 terms, and we work out the details now. We have
hN(z, w) = (fN(z, w), gN(z, w)) : C2 → C2, where

fN(z, w) =
N∑

j+k=0

ajk

(
N

j, k

)1/2

zjwk

gN(z, w) =
N∑

i+l=0

bil

(
N

i, l

)1/2

ziwl

We write

a = (a00, a10, a20, ..., aN0, a01, a11, ..., a0N) ∈ RN(N+1)/2

b = (b00, b10, b20, ..., bN0, b01, b11, ..., b0N) ∈ RN(N+1)/2

FN(z, w) = GN(z, w) =
(( N

0, 0

)1/2

z0w0,

(
N

1, 0

)1/2

z1w0, ...,

(
N

0, N

)1/2

z0wN
) ∈ RN(N+1)/2

so that f = a · F and g = b ·G = b · F . After some algebra (see Appendix), we have for
the first term, E1,N(z, w),

E1,N(z, w) = −N2 1

2π2

1

(1 + |z|2 + |w|2)3

= N2 2

π2

1

(1 + |z|2 + |w|2)3

Next, note that since a and b are identically distributed,

E2,N(z, w)dω = E
(
∂∂̄ log ||F ||2 ∧ ∂∂̄ log |b · u|2

)
=E

(
∂∂̄ log ||F ||2 ∧ ∂∂̄ log |a · u|2

)

and since the ∂∂̄-terms are all 2-forms, we have that

E
(
∂∂̄ log ||F ||2 ∧ ∂∂̄ log |a · u|2

)
=E

(
∂∂̄ log |a · u|2 ∧ ∂∂̄ log ||F ||2

)
= E3,N(z, w)dω,

which means

E2,N(z, w) = E3,N(z, w)

Writing z1 = z and z2 = w, we have

E2,N(z1, z2) = E3,N(z1, z2) =
∑
σ,τ

∂2

∂zσ(1)∂z̄τ(1)

1

2
log(1 + 2rt)

∂2

∂zσ(2)∂z̄τ(2)

log ||F ||2

E4,N(z1, z2) =
∑
σ,τ

∂2

∂zσ(1)∂z̄τ(1)

1

2
log(1 + 2rt)

∂2

∂zσ(2)∂z̄τ(2)

1

2
log(1 + 2rt)
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and

ẼN(z1, z2) = E2,N(z1, z2) + E3,N(z1, z2) + E4,N(z1, z2)

=
∑
σ,τ

∂2

∂zσ(1)∂z̄τ(1)

(
1

2
log(1 + 2rt)

)
∂2

∂zσ(2)∂z̄τ(2)

(
2 log ||F ||2 +

1

2
log(1 + 2rt)

)
.

We now write out the sum to get

E2,N(z, w) + E3,N(z, w) + E4,N(z, w)

= ∂2

∂z∂z̄

(
1
2
log(1 + 2rt)

)
∂2

∂w∂w̄

(
2 log ||F ||2 + 1

2
log(1 + 2rt)

)

− ∂2

∂z∂w̄

(
1
2
log(1 + 2rt)

)
∂2

∂w∂z̄

(
2 log ||F ||2 + 1

2
log(1 + 2rt)

)

− ∂2

∂w∂z̄

(
1
2
log(1 + 2rt)

)
∂2

∂z∂w̄

(
2 log ||F ||2 + 1

2
log(1 + 2rt)

)

+ ∂2

∂w∂w̄

(
1
2
log(1 + 2rt)

)
∂2

∂z∂z̄

(
2 log ||F ||2 + 1

2
log(1 + 2rt)

)

Since

∂2

∂w∂z̄
ψ(z, w) =

∂2

∂z̄∂w
ψ(z, w) =

∂2

∂z∂w̄
ψ(z, w)

for any real function ψ(z, w), and since

∂2

∂z∂w̄
ψ(z, w) +

∂2

∂z∂w̄
ψ(z, w) = 2 Re

∂2

∂z∂w̄
ψ(z, w),

we have

E2,N(z) + E3,N(z) + E4,N(z) = ∂2

∂z∂z̄

(
1
2
log(1 + 2rt)

)
∂2

∂w∂w̄

(
2 log ||F ||2 + 1

2
log(1 + 2rt)

)

−2 Re ∂2

∂z∂w̄

(
1
2
log(1 + 2rt)

)
∂2

∂w∂z̄

(
2 log ||F ||2 + 1

2
log(1 + 2rt)

)

+ ∂2

∂w∂w̄

(
1
2
log(1 + 2rt)

)
∂2

∂z∂z̄

(
2 log ||F ||2 + 1

2
log(1 + 2rt)

)
.

where

||F ||2 = (1 + |z|2 + |w|2)N

2rt =

√
1− (1 + z2 + w2)N

(1 + |z|2 + |w|2)N

This simplified formula is still messy, but it can at least be written in a couple lines,
and is useful enough to plug into Maple, for example, and get a plot.
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6. Scaling Limit for ẼN(z, w). Writing z = x + iy and w = u + iv, we have

1

N2
E2,N(

z√
N

,
w√
N

) + E3,N(
z√
N

,
w√
N

) + E4,N(
z√
N

,
w√
N

) →
∂2

∂z∂z̄

(
1
2
log(1 +

√
1− e−4(y2+v2))

)
∂2

∂w∂w̄

(
2 log(|z|2 + |w|2) + 1

2
log(1 +

√
1− e−4(y2+v2))

)

−2 Re ∂2

∂z∂w̄

(
1
2
log(1 +

√
1− e−4(y2+v2))

)
∂2

∂w∂z̄

(
2 log(|z|2 + |w|2) + 1

2
log(1 +

√
1− e−4(y2+v2))

)

+ ∂2

∂w∂w̄

(
1
2
log(1 +

√
1− e−4(y2+v2))

)
∂2

∂z∂z̄

(
2 log(|z|2 + |w|2) + 1

2
log(1 +

√
1− e−4(y2+v2))

)
.

7. Appendix - Calculation of E1,N(z, w).

E1,N(z, w)dω = ∂∂̄ log ||F ||2 ∧ ∂∂̄ log ||F ||2

=

[
2

(
∂2

∂z∂z̄
log ||F ||2

)(
∂2

∂w∂w̄
log ||F ||2

)
− 2

(
∂2

∂z∂w̄
log ||F ||2

)(
∂2

∂w∂z̄
log ||F ||2

)]
dω

= 2N2
[ (

1 + |z|2
(1 + |z|2 + |w|2)2

)(
1 + |w|2

(1 + |z|2 + |w|2)2

)

−
( −wz̄

(1 + |z|2 + |w|2)2

)( −zw̄

(1 + |z|2 + |w|2)2

) ]
dω

=2N2 (1 + |z|2)(1 + |w|2)− |zw|2
(1 + |z|2 + |w|2)4

dω

= 2N2 (1 + |w|2 + |z|2 + |zw|2)− |zw|2
(1 + |z|2 + |w|2)4

dω

= 2N2 1 + |w|2 + |z|2
(1 + |z|2 + |w|2)3

dω = 2N2 1

(1 + |z|2 + |w|2)2
dω

after some algebra. So we have

− 1

4π2
E

(
∂∂̄ log ||F ||2 ∧ ∂∂̄ log ||F ||2

)
= −2N2

4π2
E

( 1

(1 + |z|2 + |w|2)3
dω

)

= −N2

2π2

∫ [
1

(1 + |z|2 + |w|2)3
dω

]
dµ(a)dµ(b)



37

and since the integrand is independent of a and b, and since dω = dz ∧ dz̄ ∧ dw ∧ dw̄,
this equals

− N2

2π2

1

(1 + |z|2 + |w|2)3
dz ∧ dz̄ ∧ dw ∧ dw̄

=− N2

2π2

1

(1 + |z|2 + |w|2)3
(−2i)dx ∧ dy ∧ (−2i)du ∧ dv

=
2N2

π2

1

(1 + |z|2 + |w|2)3
dx ∧ dy ∧ du ∧ dv
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6. Density of Critical Points in m variables case using Kac-Rice method

We first consider hm,N : Cm → C where hm,N is a complex random polynomial of the
form

hm,N(z) =
N∑

|J |=0

cJ

(
N

J

)1/2

zJ

where the cJ ’s are complex random variables, with associated measure dγ and where we
use the following multi-index notation:

z = (z1, ..., zm)

|J | = j1 + · · ·+ jm

cJ = cj1...jm ∈ C(
N

J

)
=

(
N

j1, ..., jm

)
=

N !

(N − j1 − ...− jm)!j1! ... jm!

zJ = zj1
1 ...zjm

m .

We consider two special cases

dγcx =
1

πN
e−|c|

2

dc, c ∈ CDN , DN =

(
N + m

m

)

dγreal = δS
1

πN
e−|c|

2

dc, c ∈ CDN ,

where δS is the delta function on S ⊂ CDN , the set of points c = a + ib ∈ CDN where
b = 0 ∈ RDN . Here dγcx corresponds to the standard complex Gaussian coefficients case,
where we are considering

hm,N(z) =
N∑

|J |=0

cJ

(
N

J

)1/2

zJ ,

where the cJ ’s are standard complex Gaussian random variables, and dγreal corresponds
to the standard real Gaussian coefficients case, where we have

hm,N(z) =
N∑

|J |=0

cJ

(
N

J

)1/2

zJ =
N∑

|J |=0

aJ

(
N

J

)1/2

zJ ,

where cJ = aJ + i0 is a standard real Gaussian random variable. We let Eγreal
(·) denote

expectation with respect to dγreal and Eγcx(·) denote expectation with respect to dγcx.

The goal of this section is to show the following result about the density of critical
points of hN using the Kac-Rice formula:
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Theorem 0.5. Let K ⊆ Cm\Rm be compact, let λ be a positive constant, and let h, γcx,
and γreal be defined as above. We have

Eγreal
(ChN

)(z) = Eγcx(ChN
)(z) + O(e−λN),

for all z ∈ Cm\Rm, and uniformly on K.

In other words, at any point away from Rm, the expected density of critical points in
the real coefficients case rapidly approaches the expected density of critical points in the
complex coefficients case as N gets large.

Instead of studying the critical points of this random polynomial h, we could equiva-
lently study the zeros of (f1,N , ..., fm,N) : Cm → Cm, where fq,N is a complex polynomial
of the form

fq,N(z) =
N∑

|J |=0

cJ

(
N

J

)1/2
∂

∂zq

zJ , 1 ≤ q ≤ m.

We’ll consider fq,N(z) as a function from R2m to R2m, use the fact that Ch = Zf1···fm =

Zfr
1 ···fr

mf i
1···f i

m
, where fq = f r

q +if i
q, and find Eγ(Zfr

1 ···fr
mf i

1···f i
m
). Consider x = (f r

1 , . . . f r
m, f i

1, . . . , f
i
m).

Let ξ be the matrix of derivatives of the function

(x1, . . . xm, y1, . . . , ym) → x.

We can write

ξ =




(
∂f r

q

∂xq′

)

1≤q,q′≤m

(
∂f r

q

∂yq′

)

1≤q,q′≤m

(
∂f i

q

∂xq′

)

1≤q,q′≤m

(
∂f i

q

∂yq′

)

1≤q,q′≤m




Noting the Cauchy-Riemann equations hold, and that
∂f r

q

∂xq′
=

∂f r
q′

∂xq

and
∂f i

q

∂xq′
=

∂f i
q′

∂xq

we

can choose a new basis and write ξ as a vector

ξ̂ = [ξ]B =

((
∂f r

q

∂xq′

)

q≤q′
,

(
∂f i

q

∂xq′

)

q≤q′

)
∈ R2dm ,

where dm = m(m + 1)/2. Note also that because of Cauchy Riemann equations, det ξ is

positive, and
√

det ξξT = det ξ. By the Kac-Rice formula, we have

Eγ(Zfr
1 ···fr

mf i
1···f i

m
) =

∫

R2dm

√
det(ξξT )Dγ(0, ξ̂; z)dξ̂ =

∫

R2dm

det ξ Dγ(0, ξ̂; z)dξ̂

where Dγ(x, ξ̂; z) is the Gaussian density in 2m + 2dm variables given by

Dγ(x, ξ̂; z) =
1

πm+dm
√

det ∆γ

e−
1
2
〈∆−1

γ (x
ξ̂),(x

ξ̂)〉
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and where ∆γ, the covariance matrix of

(
x

ξ̂

)
, is given in block form by

∆γ =

(
Aγ Bγ

BT
γ Cγ

)
((2m + 2dm)× (2m + 2dm) matrix)

Aγ = (Eγ(xqx̄q′))q,q′ = AT
γ (2m× 2m matrix)

Bγ =
(
Eγ(xq

¯̂
ξj)

)
q,j

(2m× 2dm matrix)

Cγ =
(
Eγ(ξ̂j

¯̂
ξj′)

)
j,j′

= CT
γ (2dm × 2dm matrix).

where 1 ≤ q, q′ ≤ 2m, 1 ≤ j, j′ ≤ 2dm. Note that we can also write A,B, and C in block
form as

Aγ =




(
Eγ(f

r
q f r

q′)
)

q,q′
(
Eγ(f

r
q f i

q′)
)

q,q′

(
Eγ(f

i
qf

r
q′)

)
q,q′

(
Eγ(f

i
qf

i
q′)

)
q,q′




Bγ =




(
Eγ

(
f r

q

∂fr
q′

∂xp′

))
q, q′,p′

(
Eγ

(
f r

q

∂f i
q′

∂xp′

))

q, q′,p′

(
Eγ

(
f i

q

∂fr
q′

∂xp′

))
q, q′,p′

(
Eγ

(
f i

q

∂f i
q′

∂xp′

))

q, q′,p′




Cγ =




[
Eγ

(
∂fr

q

∂xp

∂fr
q′

∂xp′

)]
q,p,q′,p′

[
Eγ

(
∂fr

q

∂xp

∂f i
q′

∂xp′

)]

q,p,q′,p′

[
Eγ

(
∂f i

q

∂xp

∂fr
q′

∂xp′

)]
q,p,q′,p′

[
Eγ

(
∂f i

q

∂xp

∂f i
q′

∂xp′

)]

q,p,q′,p′




where 1 ≤ q ≤ p ≤ m, and 1 ≤ q′ ≤ p′ ≤ m.

Now, using the fact that for Dγ(0, ξ̂; z) only the lower right block of ∆−1
γ matters, we

can write

Dγ(0, ξ̂; z) =
1

πm+dm
√

det ∆γ

exp

(
−1

2
〈∆−1

γ

(
0
ξ̂

)
,
(
0
ξ̂

)〉
)

=
1

πm
√

det Aγ

1

πdm
√

det Λγ

exp

(
−1

2
〈Λ−1

γ ξ̂, ξ̂〉
)
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where Λ−1
γ is the lower right block of ∆−1

γ and is given by

Λγ = Cγ −BT
γ A−1

γ Bγ,

We have also used the fact that

det ∆γ = det Aγ det Λγ.

So now we have that

Eγ(Ch) = Eγ(Zf1···fm) =
1

πm
√

det Aγ

∫

Rdm

(det ξ)
1

πdm
√

det Λγ

exp

(
−1

2
〈Λ−1

γ ξ̂, ξ̂〉
)

dξ̂

=
1

πm
√

det Aγ

EΛγ (det ξ),

since det ξ ≥ 0. We now want to evaluate EΛγ (det ξ) using the Wick formula, which
states that if X1, . . . , X2m are jointly Gaussian random variables, then

E(
2m∏
q=1

Xq) =
∑ m∏

q=1

E(XiqXjq)

where the sum is over partition of {1, ..., 2m} into disjoint pairs {iq, jq}.
First we write

EΛγ (det ξ) = EΛγ

( ∑
σ∈S2m

sgn(σ)
2m∏
q=1

ξq,σ(q)

)
=

∑
σ∈S2m

sgn(σ)EΛγ

(
2m∏
q=1

ξq,σ(q)

)

=
∑

σ∈S2m

sgn(σ)
∑ m∏

q=1

EΛγ

(
ξiq ,σ(iq)ξjq ,σ(jq)

)

where σ is a permutation, and where the second sum is over partitions of {1, ..., 2m} into
disjoint pairs {iq, jq}.

Note that terms of the form

EΛγ

(
ξiq ,σ(iq)ξjq ,τ(jq)

)

are actually entries of Λγ. So we have written EΛγ (det ξ) as a sum of products of entries
in Λγ. More specifically, we have that EΛγ (det ξ) = φ(Λγ), where φ(Λγ) is a homogeneous
polynomial in the entries of Λγ.

1. Two special cases. Suppose now that we have the measures

dγcx =
1

πDN
e−|c|

2

dc, c ∈ CDN , DN =

(
N + m

m

)

dγreal = δS
1

πDN
e−|c|

2

dc, c ∈ CDN , DN =

(
N + m

m

)
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where δS is the delta function on S ⊂ CDN , the set of points c = a + ib ∈ CDN where
b = 0 ∈ RDN . Here dγcx corresponds to the standard complex Gaussian coefficients case,
where we are considering

hm,N(z) =
N∑

|J |=0

cJ

(
N

J

)1/2

zJ

where the cJ ’s are standard complex Gaussian random variables, and dγreal corresponds
to the standard real Gaussian coefficients case, where we have

hm,N(z) =
N∑

|J |=0

cJ

(
N

J

)1/2

zJ =
N∑

|J |=0

aJ

(
N

J

)1/2

zJ

where cJ = aj + i0 is a standard real Gaussian random variable.

We now state three important lemmas.

Lemma 1.6. Let K be a compact set in Cm\Rm. The following are true for all q, q′, p, p′

and for some λ > 0:

(1) Eγcx(fqfq′) = 0

(2)
Eγreal

(fqfq′)

(1 + z · z̄)N
= O(e−λN), uniformly on K

(3) Eγcx

(
fq

∂fq′

∂zp′

)
= 0

(4)
Eγreal

(
fq

∂fq′
∂zp′

)

(1 + z · z̄)N
= O(e−λN), uniformly on K

(5) Eγcx

(
∂fq

∂zp

∂fq′

∂zp′

)
= 0

(6)
Eγreal

(
∂fq

∂zp

∂fq′
∂zp′

)

(1 + z · z̄)N
= O(e−λN), uniformly on K

Proof. We prove just (1) and (2), the rest are proved similarly. For (1) we have

Eγcx(fqfq′)

= Eγcx







N∑

|J |=0

cJ

(
N

J

)1/2
∂

∂zq

zJ







N∑

|K|=0

cK

(
N

K

)1/2
∂

∂zq′
zK







= Eγcx




N∑

|J |=0

N∑

|K|=0

cJcK

(
N

J

)1/2(
N

K

)1/2
∂

∂zq

zJ ∂

∂zq′
zK




=
N∑

|J |=0

N∑

|K|=0

Eγcx (cJcK)

(
N

J

)1/2(
N

K

)1/2
∂

∂zq

zJ ∂

∂zq′
zK = 0
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since E(cJcK) = 0 for all J,K. (Note that E(cJ c̄K) = 1 when J = K, so Eγcx(fqf̄q′) 6= 0).

Similarly, for (2) we have

Eγreal
(fqfq′)

(1 + z · z̄)N
=

1

(1 + z · z̄)N

N∑

|J |=0

N∑

|K|=0

Eγreal
(cJcK)

(
N

J

)1/2(
N

K

)1/2
∂

∂zq

zJ ∂

∂zq′
zK

=
1

(1 + z · z̄)N

N∑

|J |=0

N∑

|K|=0

Eγreal
(aJaK)

(
N

J

)1/2(
N

K

)1/2
∂

∂zq

zJ ∂

∂zq′
zK

=
1

(1 + z · z̄)N

N∑

|J |=0

(
N

J

)
∂

∂zq

zJ ∂

∂zq′
zJ

since Eγreal
(aJaK) = 1, when J = K, and is zero otherwise. We can then write

Eγreal
(fqfq′)

(1 + z · z̄)N
=

1

(1 + z · z̄)N

N∑

|J |=0

(
N

J

)
∂

∂zq

zJ ∂

∂zq′
zJ =

1

(1 + z · z̄)N

N∑

|J |=0

(
N

J

)
∂

∂zq

zJ ∂

∂z̃q′
z̃J

∣∣∣
z̃=z

=
1

(1 + z · z̄)N

∂

∂zq

∂

∂z̃q′

N∑

|J |=0

(
N

J

)
(zz̃)J

∣∣∣
z̃=z

=
1

(1 + z · z̄)N

∂

∂zq

∂

∂z̃q′
(1 + z · z̃)N

∣∣∣
z̃=z

=
1

(1 + z · z̄)N
N(N − 1)z̃qzq′(1 + z · z̃)N−2

∣∣∣
z̃=z

= N(N − 1)zqzq′
(1 + z · z)N−2

(1 + z · z̄)N

=
N(N − 1)zqzq′

(1 + z · z̄)2

(
1 + z · z
1 + z · z̄

)N−2

Since |1 + z · z| < |1 + z · z̄| = 1 + z · z̄, for all z ∈ Cm \Rm, we have that
∣∣∣1 + z · z
1 + z · z̄

∣∣∣ < 1

which implies that

(
1 + z · z
1 + z · z̄

)N−2

= O(e−λN), z ∈ Cm \ Rm, and that

Eγreal
(fqfq′)

(1 + z · z̄)N
= O(e−λN), uniformly for all z ∈ K ⊂ Cm \ Rm.

where K is compact. ¤

Lemma 1.7. Let K be a compact set in Cm \ Rm. Using the results of the previous
lemma, we have for all q, q′, p, p′:

(1) Eγcx(f
r
q f i

q′) = 0

(2)
Eγreal

(f r
q f i

q′)

(1 + z · z̄)N
= O(e−λN), uniformly on K

(3) Eγcx

(
f r

q

∂f i
q′

∂xp′

)
= 0
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(4)

Eγreal

(
f r

q

∂f i
q′

∂xp′

)

(1 + z · z̄)N
= O(e−λN), uniformly on K

(5) Eγcx

(
∂f r

q

∂xp

∂f i
q′

∂xp′

)
= 0

(6)

Eγreal

(
∂fr

q

∂xp

∂f i
q′

∂xp′

)

(1 + z · z̄)N
= O(e−λN), uniformly on K

Proof. We again prove just (1) and (2). Using f r
q = 1

2
(fq + f̄q), f

i
q = 1

2i
(fq − f̄q), we can

get that

Eγcx(f
r
q f i

q′) = Eγcx(fqfq′ − fqf̄q′ + f̄qfq′ − f̄qf̄q′) = 0

Eγreal
(f r

q f i
q′)

(1 + z · z̄)N
=

Eγreal
(fqfq′ − fqf̄q′ + f̄qfq′ − f̄qf̄q′)

(1 + z · z̄)N
= O(e−λN)

for all z ∈ Cm \ Rm. Statements (3) through (6) could be proved similarly, noting that

fq is holomorphic so that ∂fq

∂zp
= ∂fq

∂xp
. ¤

Lemma 1.8. We have for all q, q′, p, p′:

(1) Eγcx(fqf̄q′) = Eγreal
(fqf̄q′)

(2) Eγcx

(
fq

∂fq′

∂zp′

)
= Eγreal

(
fq

∂fq′

∂zp′

)

(3) Eγcx

(
∂fq

∂zp

∂fq′

∂zp′

)
= Eγreal

(
∂fq

∂zp

∂fq′

∂zp′

)

Proof. We prove (1), and (2) and (3) are proved similarly. We have

Eγcx(fqf̄q′)

= Eγcx







N∑

|J |=0

cJ

(
N

J

)1/2
∂

∂zq

zJ







N∑

|K|=0

cK

(
N

K

)1/2
∂

∂zq′
zK







=
N∑

|J |=0

N∑

|K|=0

Eγcx(cJcK)

(
N

J

)1/2(
N

K

)1/2
∂

∂zq

zJ ∂

∂zq′
zK

=
N∑

|J |=0

(
N

J

)
∂

∂zq

zJ ∂

∂zq′
zJ
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since Eγcx (cJcK) = 1, when J = K, and is zero otherwise. Likewise, since Eγreal
(cJcK) =

Eγreal
(aJaK) = Eγreal

(aJaK), we have

Eγreal
(fqf̄q′) =

N∑

|J |=0

N∑

|K|=0

Eγreal
(cJcK)

(
N

J

)1/2(
N

K

)1/2
∂

∂zq

zJ ∂

∂zq′
zK

=
N∑

|J |=0

(
N

J

)
∂

∂zq

zJ ∂

∂zq′
zJ = Eγcx(fqf̄q′)

¤

Using these 3 lemmas, we can write A,B,C and therefore Λ in more detail. We have

Aγcx

(1 + z · z̄)N
=




(
Eγcx(f

r
q f r

q′)

(1 + z · z̄)N

)

q,q′
0

0

(
Eγcx(f

i
qf

i
q′)

(1 + z · z̄)N

)

q,q′




=




A 0

0 −A




Aγreal

(1 + z · z̄)N
=




(
Eγreal

(f r
q f r

q′)

(1 + z · z̄)N

)

q,q′
O(e−λN)

O(e−λN)

(
Eγreal

(f i
qf

i
q′)

(1 + z · z̄)N

)

q,q′




=




A O(e−λN)

O(e−λN) −A




so that we get

Aγreal

(1 + z · z̄)N
=

Aγcx

(1 + z · z̄)N
+ O(e−λN), uniformly on K.
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Likewise, we have

Bγcx

(1 + z · z̄)N
=





Eγcx

(
f r

q

∂fr
q′

∂xp′

)

(1 + z · z̄)N




q, q′,p′

0

0




Eγcx

(
f i

q

∂f i
q′

∂xp′

)

(1 + z · z̄)N




q, q′,p′




=




B 0

0 −B




Bγreal

(1 + z · z̄)N
=





Eγreal

(
f r

q

∂fr
q′

∂xp′

)

(1 + z · z̄)N




q, q′,p′

O(e−λN)

O(e−λN)




Eγreal

(
f i

q

∂f i
q′

∂xp′

)

(1 + z · z̄)N




q, q′,p′




=




B O(e−λN)

O(e−λN) −B




so that we get

Bγreal

(1 + z · z̄)N
=

Bγcx

(1 + z · z̄)N
+ O(e−λN), uniformly on K.
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and

Cγcx

(1 + z · z̄)N
=





Eγcx

(
∂fr

q

∂xp

∂fr
q′

∂xp′

)

(1 + z · z̄)N




q,p,q′,p′

0

0




Eγcx

(
∂f i

q

∂xp

∂f i
q′

∂xp′

)

(1 + z · z̄)N




q,p,q′,p′




=




C 0

0 −C




Cγreal

(1 + z · z̄)N
=





Eγreal

(
∂fr

q

∂xp

∂fr
q′

∂xp′

)

(1 + z · z̄)N




q,p,q′,p′

O(e−λN)

O(e−λN)




Eγreal

(
∂f i

q

∂xp

∂f i
q′

∂xp′

)

(1 + z · z̄)N




q,p,q′,p′




=




C O(e−λN)

O(e−λN) −C




so that we get

Cγreal

(1 + z · z̄)N
=

Cγcx

(1 + z · z̄)N
+ O(e−λN), uniformly on K.

Finally, using Λγ = Cγ −BT
γ A−1

γ Bγ, we have

Λγcx

(1 + z · z̄)N
=




Cγcx−BT
γcxA−1

γcxBγcx

(1+z·z̄)N 0

0 − (Cγcx−BT
γcxA−1

γcxBγcx )

(1+z·z̄)N


 =




Λ 0

0 −Λ




Λγreal

(1 + z · z̄)N
=




Cγreal
−BT

γcxA−1
γreal

Bγcx

(1+z·z̄)N + O(e−λN) O(e−λN)

O(e−λN) − (Cγcx−BT
γcxA−1

γreal
Bγcx )

(1+z·z̄)N + O(e−λN)




=




Λ + O(e−λN) O(e−λN)

O(e−λN) −Λ + O(e−λN)




so that we get

Λγreal

(1 + z · z̄)N
=

Λγcx

(1 + z · z̄)N
+ O(e−λN), uniformly on K.
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Note that each term in EΛγcx
(det ξ) has m factors each of which is an element of Λγcx ,

and likewise for EΛγreal
(det ξ). This gives

EΛγreal
(det ξ)

(1 + z · z̄)Nm
=

EΛγcx
(det ξ)

(1 + z · z̄)Nm
+ O(e−λN), uniformly on K.

Also note that we have
det Aγreal

(1 + z · z̄)2Nm
=

det Aγcx

(1 + z · z̄)2Nm
+ O(e−λN), uniformly on K.

This means that we have

Eγreal
(Zf1···fm) =

1

πm

EΛγreal
(det ξ)√

det Aγreal

=
1

πm

1√
det Aγreal

(1+z·z̄)2Nm

EΛγreal
(det ξ)

(1 + z · z̄)Nm

=
1

πm

1√
det Aγcx

(1+z·z̄)2Nm + O(e−λN)

(
EΛγcx

(det ξ)

(1 + z · z̄)Nm
+ O(e−λN)

)

=
1

πm

1√
det Aγcx

(1+z·z̄)2Nm

EΛγcx
(det ξ)

(1 + z · z̄)Nm
+ O(e−λN)

=
1

πm

EΛγcx
(det ξ)√

det Aγcx

+ O(e−λN)

= Eγcx(Zf1···fm) + O(e−λN), uniformly on K.
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