The $E(1, 2)$ Cohomology of the Eilenberg-Mac Lane Space $K(\mathbb{Z}, 3)$

by

Hsin-hao Su

A dissertation submitted to the Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland
May, 2006.
Abstract

In this paper, we give new bases of $E_*(BP\langle 1 \rangle_4)$ and $E_*(BP\langle 1 \rangle_6)$ in order to define a basis of $E^*(BP\langle 1 \rangle_4)$ and $E^*(BP\langle 1 \rangle_6)$. With these two new bases, we have a short exact sequence of Hopf algebras

$$E^* \leftarrow E^*(K(\mathbb{Z}, 3)) \xrightarrow{J^*} E^* [[y_0^i : i \geq 0]] \xleftarrow{\nu_1^*} E^* [[x_i^i : i \geq 0]] \leftarrow E^*.$$

The action of ν_1^* is calculated by using formal group laws and used to compute $E^*(K(\mathbb{Z}, 3))$ as a completion of $E^*[z]$.

Readers: Dr. J. Michael Boardman (Advisor) and Dr. Jack Morava
Acknowledgement

I would like to thank my advisor, Dr. W. Stephen Wilson, for all of his help over the past few years. His guidance and patience have been exceptional. None of this project would have been possible without his vision, guidance and patience during my study.

I would also like to thank my other advisor, Dr. J. Michael Boardman, for his helpful advice and reading through my thesis. This project could never have been finished without his assistance.

I would also like to thank the faculty at Johns Hopkins University and National Tsing Hua University. I owe special thanks to Dr. Dung Yung Yan and Dr. Jer-shyong Lin for their constant encouragement and support.

Additionally, I would like to thank my office staff and fellow graduate students in the Department of Mathematics at Johns Hopkins University. They have my appreciation for their friendship and support. Our daily discussion and chats together contributed immeasurably to my successful completion of this degree.

Finally, I would especially like to thank my family for their love and support. I am very grateful to my family-in-law for their love and prayer.

I dedicate this dissertation to my wife, Hsin-I Alice Fu, without whose unwavering love, encouragement and support it would never have been completed.
Contents

1 Introduction 1

2 Preliminary 3
 2.1 Formal Group Laws 5
 2.2 Wilson’s Splitting Theorem 8
 2.3 The Formal Group Law for $E(1,2)$ 9
 2.4 Appendix: Low Degree Examples 10

3 BP Homology and Cohomology of $BP(1)_4$ and $BP(1)_6$ 12
 3.1 Generators of Cohomology 15
 3.2 The Module $QE^*(K(Z,3))$ 17
 3.3 Bases of Homology and Cohomology 19

4 $E(1,2)^*(K(Z,3))$ 20
 4.1 The Bockstein Spectral Sequence 21
 4.2 Topology of Cohomology in $E(1,2)^*(K(Z,3))$ 22
 4.3 Relations in $E(1,2)^*(K(Z,3))$ 24
1 Introduction

The Eilenberg-Mac Lane Space $K(\mathbb{Z}, 2)$ is readily recognized as complex projective space $\mathbb{C}P^\infty$. Given any multiplicative complex-oriented generalized cohomology theory $E^*(-)$, a classical result of Dold states that

$$E^* (\mathbb{C}P^\infty) = E^* [[x]],$$

the graded ring of formal power series over the coefficient ring E^* of E, where x denotes the Chern class of the Hopf line bundle over $\mathbb{C}P^\infty$.

This paper studies the E-cohomology of the next Eilenberg-Mac Lane space $K(\mathbb{Z}, 3)$, which may be viewed as the classifying space of $K(\mathbb{Z}, 2)$, for certain complex-oriented E.

Note that, for any space X, a cohomology class in $E^k(X)$ corresponds to a map $X \to \tilde{E}_k$, defined up to homotopy, where \tilde{E}_k comes from the Brown Representation Theorem, which can be stated as: for any cohomology theory E, for all k, there exists a classifying space \tilde{E}_k such that $E^k(X) \cong [X, \tilde{E}_k]$, the set of homotopy classes of unbased maps $X \to \tilde{E}_k$.

For a prime p, the Johnson-Wilson spectrum $BP\langle q \rangle$ is a BP-module spectrum with $\pi_*(BP\langle q \rangle) = \mathbb{Z}(p)[v_1, \ldots, v_q]$. For $q > 0$, there is a stable cofibre sequence

$$\Sigma^{2(p^q-1)}BP\langle q \rangle \xrightarrow{v_q} BP\langle q \rangle \to BP\langle q - 1 \rangle \to \Sigma^{2p^q-1}BP\langle q \rangle.$$

Unstably, the boundary map is

$$BP\langle k - 1 \rangle \xrightarrow{j} BP\langle k \rangle_{j + 2p^k - 1}$$

and the iteration is

$$K(\mathbb{Z}/p^j, q + 1) \to K(\mathbb{Z}(p), q + 2) \to BP\langle 1 \rangle_{q + 2p + 1} \to \cdots \to BP\langle q \rangle_{g(q)}$$

where $g(q) = 2(p^q + p^{q-1} + \cdots + p + 1)$ and $BP\langle 0 \rangle_{q+2} = K(\mathbb{Z}(p), q + 2)$. In [RWY], there is an exact sequence in the category of $K(n)_*$-Hopf algebras:

$$K(n)_* \to K(n)_* (K(\mathbb{Z}(p), q + 2)) \xrightarrow{v_q} K(n)_* (BP\langle q \rangle_{g(q)}) \xrightarrow{v_q} K(n)_* (BP\langle q \rangle_{g(q) - |v_q|}).$$

1
This induces, by Theorem 1.19 in [RWY],

\[BP^* \left(K \left(\mathbb{Z}(p), q + 2 \right) \right) \cong \frac{BP^* \left(BP \left\langle q \right\rangle_{g(q)-|v_q^*|} \right)}{\left(v_q^* \right)} , \]

where \((v_q^*) \) denotes the ideal generated by the image under \(v_q^* \) of the augmentation ideal in \(BP^* \left(BP \left\langle q \right\rangle_{g(q)-|v_q|} \right) \).

In 1999, Tamanoi [T], who was motivated by the above result, created new generators and wrote down a very simple relation in terms of his new generators. Let \(i_{g(q)+t}^{(q)} \) be the inclusion map

\[i_{g(q)+t}^{(q)} : BP \left\langle q \right\rangle_{g(q)+t} \longrightarrow BP_{g(q)+t} \]

for \(t \leq 0 \). Recall that by Wilson’s Splitting Theorem [Wil75], \(BP \left\langle q \right\rangle_{g(q)+t} \) is a factor space of \(BP_{g(q)+t} \). Thus, \(i_{g(q)+t}^{(q)} \) exists. This map defines a cohomology class

\[i_{g(q)+t}^{(q)} \in BP_{g(q)+t} \left(BP \left\langle q \right\rangle_{g(q)+t} \right) , \]

namely the \(BP \) fundamental class for \(BP_{g(q)+t} \left(BP \left\langle q \right\rangle_{g(q)+t} \right) \). Then, Tamano de

defined the \(v_q \)-series

\[[v_q] = v_q^* \left(i_{g(q)}^{(q)} \right) \in BP_{g(q)-|v_q|} \left(BP \left\langle q \right\rangle_{g(q)} \right) , \]

which comes from the composition map

\[BP \left\langle q \right\rangle_{g(q)} \xrightarrow{v_q} BP \left\langle q \right\rangle_{g(q)-|v_q|} \xrightarrow{i_{g(q)-|v_q|}^{(q)}} BP_{g(q)-|v_q|} . \]

Also, he showed that

\[[v_q] = v_q \theta_q^{(q)} + v_{q+1} \theta_{q+1}^{(q)} + \cdots + v_{q+j} \theta_{q+j}^{(q)} + \cdots , \]

where the class \(\theta_{q+j}^{(q)} \) with \(j \geq 1 \) is defined as the following composition:

\[BP \left\langle q \right\rangle_{g(q)} \longrightarrow BP_{g(q)} \xrightarrow{v_q} BP_{g(q)-|v_q|} \xrightarrow{\text{proj}(q+j)} BP \left\langle q+j \right\rangle_{g(q)+2p^j-2p^j} \longrightarrow BP_{g(q)+2p^j-2p^j} \]

and the projection is provided by Wilson’s theorem.
We take $p = 2$. By the short exact sequence of Hopf algebras

$$BP^* \hookrightarrow BP^* (K(\mathbb{Z}, 3)) \xrightarrow{j^*} BP^* \left(BP \langle 1 \rangle_6 \right) \xrightarrow{v_1^*} BP^* \left(BP \langle 1 \rangle_4 \right) \hookrightarrow BP^*, $$

we have

$$BP^* (K(\mathbb{Z}, 3)) \cong \frac{BP^* \left(BP \langle 1 \rangle_6 \right)}{(v_1^*)},$$

where (v_1^*) denotes the image under v_1^* of the augmentation ideal of $BP^* \left(BP \langle 1 \rangle_4 \right)$.

The relation Tamanoi found in this case is

$$v_1^* (x(0)) = v_1 y_{(0)} + v_2 y_{(1)} + \cdots + v_i y_{(i-1)} + \cdots.$$

By tensoring with $E(1, 2)^*$, we have $E(1, 2)^* (K(\mathbb{Z}, 3)) \cong E(1, 2)^* \left(BP \langle 1 \rangle_6 \right) / (v_1^*)$

where $v_1^* (x(0)) = v_1 y_{(0)} + v_2 y_{(1)}$.

We use the formal group law to create a new set of generators $y'_{(i)}$, for which the relations in $E(1, 2)^* \left(BP \langle 1 \rangle_6 \right)$ take the simplified form

$$v_1^* (x(i)) = v_1^{2^i} y'_{(i)} + v_2^{2^i} y'_{(i+1)} + D_{(i)}$$

for $i \geq 0$, where $D_{(i)}$ is decomposable.

This paper is organized as follows: In section 2, we collect some basic notation and theorems for the cohomology theories BP and $E(k, n)$. We calculate some formal group laws in section 3. In section 4, a basis of $BP_4 \left(BP \langle 1 \rangle_4 \right)$ and $BP_6 \left(BP \langle 1 \rangle_6 \right)$ will be given so that we can write down a dual basis for $BP^* \left(BP \langle 1 \rangle_4 \right)$ and $BP^* \left(BP \langle 1 \rangle_6 \right)$. These are used to prove the main results.

2 Preliminary

The coefficient ring for Brown-Peterson cohomology is

$$BP^* \cong \mathbb{Z}(p)[v_1, v_2, \cdots]$$

where the degree of v_n is $-2 (p^n - 1)$. In homology, we often write the coefficient ring as BP_*, with $BP_n = BP^{-n}$ (see [RW77]).

We have the Hopf algebroid $(BP_*, BP_* BP)$ which satisfies:
1. $BP_* \cong \mathbb{Z}_p[v_1, v_2, \cdots]$, where $\deg v_n = 2(p^n - 1)$.

2. $BP_*BP \cong BP_*[t_1, t_2, \cdots]$, where $\deg t_n = 2(p^n - 1)$.

3. $\eta_R : BP_* \to BP_*BP$ is a ring homomorphism, where η_Rv is written as $[v]$.

Let I_n be the ideal $(p, v_1, v_2, \cdots, v_{n-1})$. And, $v_0 = p$.

Let $BP_{(n)}_\ast = \mathbb{Z}_p[v_1, v_2, \cdots, v_n]$ and $\{BP_{(n)}\}$ be the Ω-spectrum of $BP_{(n)}$.

Let $P(n)$ be the theory with coefficient ring

$$P(n) = BP^*/I_n.$$

And,

$$P(0) = BP \text{ or } BP_p^*$$

where BP_p^* is the p-adic completion of BP. We have stable cofibrations

$$\Sigma^{2(p^n-1)} P(n) \xrightarrow{v_n} P(n) \to P(n+1)$$

which lead to long exact sequences in cohomology.

There are spectra $E(k, n)$ with coefficient rings

$$E(k, n)^* \cong v_n^{-1} BP_{(n)}^*/I_k$$

with similar stable cofibrations

$$\Sigma^{2(p^k-1)} E(k, n) \xrightarrow{v_k} E(k, n) \to E(k+1, n)$$

and long exact sequences. In particular, for $1 \leq k \leq n$,

$$E(k, n)^* \cong v_n^{-1} BP_{(n)}^*/I_k = \mathbb{F}_p[v_k, v_{k+1}, \cdots, v_n, v_n^{-1}].$$

A special case, when $k = n > 0$, is the nth Morava K-theory, $K(n)^*(X)$, with

$$K(n)^* \cong \mathbb{Z}/p[v_n, v_n^{-1}].$$

Also, when $k = 0$, $E(n)^* = E(0, n)^* \cong v_n^{-1} BP_{(n)}^* = \mathbb{Z}_p[v_1, v_2, \cdots, v_n, v_n^{-1}]$.

Let E denote any of BP_p^*, $P(n)$ or $E(k, n)$ where $0 \leq k \leq n$ and $0 < n$.
2.1 Formal Group Laws

We summarize the properties of formal group laws. We are working with the Brown-Peterson spectrum with prime 2.

Definition 2.1 A formal group law is a power series

\[F(y, z) = \sum_{i,j \geq 0} a_{ij} y^i z^j \]

such that

1. \(F(y, 0) = y \) and \(F(0, z) = z \),
2. \(F(y, F(z, w)) = F(F(y, z), w) \),

where \(a_{ij} \) is in a commutative ring with unit. Moreover, we say a formal group law is commutative if \(F(y, z) = F(z, y) \). We write \(y +_F z \) for \(F(y, z) \).

Example 2.2 We have two trivial examples of commutative formal group laws:

\[F(y, z) = y + z \]

and

\[F(y, z) = y + z + yz. \]

By the first condition in the formal group law definition, we have

\[a_{i0} = \begin{cases} 1 & \text{if } i = 1 \\ 0 & \text{if } i \neq 1 \end{cases} \]

and

\[a_{0j} = \begin{cases} 1 & \text{if } j = 1 \\ 0 & \text{if } j \neq 1 \end{cases}. \]

Therefore, we may write our formal group law in the following form

\[F(y, z) = y + z + \sum_{i,j \geq 1} a_{ij} y^i z^j \]

Let \(x \in BP^2(CP^\infty) \) be the Conner-Floyd Chern class.
Proposition 2.3 (In [RW77] Lemma 3.3 on Page 255) We have

1. $BP^* (\mathbb{C}P^\infty) \cong BP^* [[x]]$, the ring of formal power series on $x = x^{\mathbb{C}P^\infty}$ over BP^*.

2. $BP^* (\mathbb{C}P^\infty \times \mathbb{C}P^\infty) \cong BP^* (\mathbb{C}P^\infty) \otimes_{BP^*} BP^* (\mathbb{C}P^\infty)$.

3. $BP_* (\mathbb{C}P^\infty)$ is BP_*-free on $\beta_i \in BP_{2i} (\mathbb{C}P^\infty)$ for $i \geq 0$, dual to $(x^{\mathbb{C}P^\infty})^i$, i.e. $\left< (x^{\mathbb{C}P^\infty})^i, \beta_j \right> = \delta_{ij}$.

4. $BP^* (\mathbb{C}P^\infty \times \mathbb{C}P^\infty)$ is free on (s,t), dual to $x^{\mathbb{C}P^\infty}$.

5. The diagonal $\mathbb{C}P^\infty \to \mathbb{C}P^\infty \times \mathbb{C}P^\infty$ induces a coproduct ψ on $BP_* (\mathbb{C}P^\infty)$ with $\psi (\beta_n) = \sum_{i=0}^n \beta_i \otimes \beta_{n-i}$.

6. The H-space product $m_{\mathbb{C}P^\infty}: \mathbb{C}P^\infty \times \mathbb{C}P^\infty \to \mathbb{C}P^\infty$ induces a coproduct $m_{\mathbb{C}P^\infty}^*$ on $BP^* (\mathbb{C}P^\infty)$ with $m_{\mathbb{C}P^\infty}^* (x^{\mathbb{C}P^\infty}) = \sum_{i,j \geq 0} a_{ij} (x^{\mathbb{C}P^\infty})^i \otimes (x^{\mathbb{C}P^\infty})^j$ where $a_{ij} \in BP^{-2(i+j-1)} = BP_{2(i+j-1)}$.

7. $F(y,z) = y +_F z = y + z = \sum_{i,j \geq 0} a_{ij} y^i z^j$ is a commutative associative formal group law over BP^*.

Let $\beta (s) = \sum_{i \geq 0} \beta_i s^i$ where s is a formal indeterminate.

Proposition 2.4 (In [RW77] Theorem 3.4 on Page 255) In the power series ring $BP_* (\mathbb{C}P^\infty) [[s,t]]$, we have

$$\beta (s) \beta (t) = \beta (s +_F t)$$

where the product is that induced by the H-space structure of $\mathbb{C}P^\infty$. Moreover, for a natural number n,

$$\beta (s)^n = \beta ([n]_F (s)),$$

where $[n]_F (s) = s +_F s +_F \cdots +_F s$ for $n > 0$.

Consider $x \in BP^2 (\mathbb{C}P^\infty) = [\mathbb{C}P^\infty, BP_2]$ as a map

$$\mathbb{C}P^\infty \xrightarrow{x} BP_2.$$

This map induces a map $x_* : BP_* (\mathbb{C}P^\infty) \to BP_* (BP_2)$.

6
Definition 2.5 We define

\[b_i = x_*(\beta_i) \in BP_{2i}(BP_2). \]

As with \(\beta(s) \), we have

\[x_*(\beta(s)) = x_* \left(\sum_{i \geq 0} \beta_i s^i \right) = \sum_{i \geq 0} x_*(\beta_i) s^i = \sum_{i \geq 0} b_i s^i. \]

Therefore, we define \(b(s) = \sum_{i \geq 0} b_is^i \in BP_* (BP_2)[[s]] \), that is, \(b(s) = x_*(\beta(s)) \).

The \(H \)-space product \(m : BP_2 \times BP_2 \to BP_2 \) induces a coproduct \(m^* \) on \(BP^* (BP) \) with \(m^*(x) = \sum_{i,j \geq 0} a_{ij} x^i \otimes x^j \) where \(a_{ij} \in BP^{-2(i+j-1)} = BP_{2(i+j-1)} \).

According to [RW80], \(BP^* (BP_*) \) is a Hopf ring, where the maps of coalgebras

\[* : BP^* (BP_k) \otimes BP^* (BP_k) \cong BP^* (BP_k \times BP_k) \to BP^* (BP_k) \]

are induced by the maps \(BP_k \times BP_k \to BP_k \) that represent addition in cohomology and the maps of coalgebras

\[\circ : BP^* (BP_k) \otimes BP^* (BP_m) \cong BP^* (BP_k \times BP_m) \to BP^* (BP_{k+m}) \]

are induced by the maps \(BP_k \times BP_m \to BP_{k+m} \) that represent multiplication in cohomology.

Definition 2.6 In \(BP^* (BP_*) [[s, t]] \), we define

\[b(s) +_{[F]} b(t) = b(s) +_{[F]_{BP}} b(t) = \sum_{i,j \geq 0} [a_{ij}] \circ b(s)^\circ_i \circ b(t)^\circ_j. \]

Proposition 2.7 (In [RW77] Theorem 3.8 on Page 256) In \(BP^* (BP_*) [[s, t]] \), we have relations:

1. \(b(s +_F t) = b(s) +_{[F]} b(t), \)
2. \(b([2]_{[F]}(s)) = [2]_{[F]}(b(s)). \)

We can rewrite the relation \(b(s +_F t) = b(s) +_{[F]} b(t) \) as

\[b \left(\sum_{i,j \geq 0} a_{ij} s^i t^j \right) = \sum_{i,j \geq 0} [a_{ij}] \circ b(s)^\circ_i \circ b(t)^\circ_j, \]
that is,
\[
\sum_{n \geq 0} b_n \left(\sum_{i,j \geq 0} a_{ij} s^i t^j \right)^n = \sum_{i,j \geq 0} \left[a_{ij} \circ \left(\sum_{k \geq 0} b_k s^k \right)^{ofi} \circ \left(\sum_{l \geq 0} b_l s^l \right)^{oj} \right].
\]

Proposition 2.8 (In [RW77] Theorem 3.11(b) on Page 257) In BP for the prime 2, we have
\[
[2]_F(t) = \sum_{n > 0} v_n t^{2^n} \mod (2).
\]

In BP with prime 2, we have, see [RW77],
\[
[2]_F(t) = 2t - 7v_1 t^2 + 2v_1^2 t^3 - (7v_2 + 8v_1^3) t^4 + (30v_2 v_1 + 26v_1^4) t^5 - (111v_2 v_1^2 + 84v_1^5) t^6 + \cdots.
\]

Remark 2.9 From Lemma 1.12 in [RW77],
1. \(a_{10} = a_{01} = 1 \) and \(a_{i0} = a_{0i} = 0 \) if \(i \neq 1 \),
2. \(b_0 = [0_2] \),
3. \(b_0 \circ b_i = 0 \) for all \(i > 0 \),
4. \(b_0 \circ [a] = [0_2 - 2a] \) where \(a \in BP^{-2i} \),
5. \(2b_1 = [2] \circ b_1 \),
6. \(b_1^2 = 2b_2 - v_1 b_1 + [v_1] \circ b_1^2 \) in \(BP_2(BP_2) \) from page 261.

2.2 Wilson’s Splitting Theorem

We study the commutative diagram of \(H \)-spaces and canonical \(H \)-maps
\[
\begin{array}{ccc}
BP_6 & \xrightarrow{v_1} & BP_4 \\
\downarrow & & \downarrow \\
K(\Z_2, 3) & \xrightarrow{f} & BP \langle 1 \rangle_6 & \xrightarrow{v_1} & BP \langle 1 \rangle_4
\end{array}
\]
(1)
in which the bottom row is a fibration.

By Wilson [Wil73], \(BP \langle 1 \rangle_4 \) splits off \(BP_4 \) as an \(H \)-space. \(BP \langle 1 \rangle_6 \) splits off \(BP_6 \), but not as an \(H \)-space. Both maps \(v_1 \) represent multiplication by \(v_1 \) in cohomology.
(The fibre of an H-map is automatically an H-space, and by uniqueness, the resulting H-space structure on $K(\mathbb{Z}_{(2)}, 3)$ must be the standard one, up to homotopy.)

We apply homology theories $E_* (-)$ and cohomology theories $E^* (-)$ to this diagram, for various $E = BP$ or $E(1, 2)$. Note that since all the E we consider are 2-local, we may replace $E^*(K(\mathbb{Z}_{(2)}, 3))$ by $E^*(K(\mathbb{Z}, 3))$. $BP_*(BP_k)$ was computed by Ravenel-Wilson [RW77] and is a free BP_*-module. Since each E we use comes with a multiplicative map $BP \to E$ that induces a surjection $BP_* \to E_*$, comparison of the Atiyah-Hirzebruch spectral sequences shows that $E_*(BP_k)$ and $E_*(BP(1)_k)$ are free E_*-modules for $k = 4, 6$. More precisely,

$$E_* \otimes_{BP_*} BP_*(BP_k) \cong E_*(BP_k).$$

In view of the above splittings, the same holds for $BP(1)_k$. By dualizing, we have

$$E^* \otimes_{BP^*} B P^*(BP_k) \cong E^*(BP_k)$$

in cohomology.

Ravenel-Wilson-Yagita [RWY] established the short exact sequence of bicommutative Hopf algebras

$$E^* \to E^*(BP(1)_4) \xrightarrow{v_1^*} E^*(BP(1)_6) \xrightarrow{f_*} E^*(K(\mathbb{Z}, 3)) \to E^*$$

for various E. We wish to use this to compute $E(1, 2)^*(K(\mathbb{Z}, 3))$.

2.3 The Formal Group Law for $E(1, 2)$

Consider the spectrum $E(1, 2)$ associated with the prime 2 where the coefficient ring is $E(1, 2)^* = \mathbb{Z}/2[v_1, v_2, v_2^{-1}]$. We study its formal group law $F(y, z)$.

For convenience, we define $A_1 = v_1$ and $A_2 = v_2$. Also, for $k \geq 3$, we define

$$A_k = \sum_{m, n \geq 1 \atop 2m + 2^n = 2k} a_{mn} v_1^m v_2^n.$$

Lemma 2.10 $v_1 t^2 + v_2 t^4 = \sum_{k \geq 1} A_k t^{2k}$.

9
Proof. By the formal group law, we have
\[v_1 t^2 + F v_2 t^4 = v_1 t^2 + v_2 t^{2^2} + \sum_{m,n \geq 1} a_{mn} v_1^m v_2^n t^{2m+2^2n}. \]

Take the coefficient of \(t^{2k} \).

A lower degree calculation (2.11) is in the Appendix.

We note that \((a + b)^2 \equiv a^2 + b^2 \mod 2 \). Thus, we have
\[\left(v_1 t^2 + F v_2 t^4 \right)^q = \sum_{k \geq 1} A_k^{2^q} t^{2^{q+1}k}. \]

In general, we define \(C_{q,k} \) as the coefficient of \(t^{2k} \) in the equation
\[\left(v_1 t^2 + F v_2 t^4 \right)^q = \sum_{k \geq 1} C_{q,k} t^{2k}. \]

It’s easy to see that
\[C_{q,k} = 0, \text{ if } k < q \]

and
\[C_{2q,k} = A_{2^{q-k}}^{2^q}. \]

for all \(q \geq 1 \) and \(k \geq 2^q \), interpreted as 0 if \(k \) is not divisible by \(2^q \).

2.4 Appendix: Low Degree Examples

We collect some precise low degree calculations here for reference.

Example 2.11 The first few terms of
\[v_1 t^2 + F v_2 t^4 \]
\[= v_1 t^2 + v_2 t^4 + a_{11} v_1 v_2 t^6 + a_{21} v_1^2 v_2 t^8 + \left(a_{31} v_1^3 v_2 + a_{12} v_1 v_2^2 \right) t^{10} \]
\[+ \left(a_{41} v_1^4 v_2 + a_{22} v_1^2 v_2^2 \right) t^{12} + \left(a_{51} v_1^5 v_2 + a_{32} v_1^3 v_2^3 + a_{13} v_1 v_2^5 \right) t^{14} \]
\[+ \left(a_{61} v_1^6 v_2 + a_{42} v_1^4 v_2^2 + a_{23} v_1^2 v_2^4 \right) t^{18} + \cdots \]
\[= A_1 t^2 + A_2 t^4 + A_3 t^6 + A_4 t^8 + A_5 t^{10} + A_6 t^{12} + A_7 t^{14} + A_8 t^{16} + \cdots. \]
Example 2.12 The first few terms of

\[(v_1 t^2 + v_2 t^4)^2\]

\[= \left(\sum_{k \geq 1} A_k t^{2k} \right)^2 \]
\[= (A_1 t^2 + A_2 t^4 + A_3 t^6 + A_4 t^8 + \cdots) \left(A_1 t^2 + A_2 t^4 + A_3 t^6 + A_4 t^8 + \cdots \right) \]
\[= A_1 A_1 t^4 + (A_1 A_2 + A_2 A_1) t^6 + (A_1 A_3 + A_2 A_2 + A_3 A_1) t^8 \]
\[\quad + (A_1 A_4 + A_2 A_3 + A_3 A_2 + A_4 A_1) t^{10} + \cdots \]
\[= A_1^2 t^4 + 2 A_1 A_2 t^6 + (A_2^2 + 2 A_1 A_3) t^8 + 2 (A_1 A_4 + A_2 A_3) t^{10} + \cdots.\]

or

\[(v_1 t^2 + v_2 t^4)^2\]
\[= v_1^2 t^4 + 2 v_1 v_2 t^6 + (v_2^2 + 2 a_{11} v_1^2 v_2) t^8 + 2 \left(a_{21} v_1^3 v_2 + a_{11} v_1 v_2^2 \right) t^{10} \]
\[\quad + \left(a_{11}^2 v_1^2 v_2^2 + 2 \left(a_{31} v_1^4 v_2 + a_{12} v_1^2 v_2^2 + a_{21} v_1 v_2^3 \right) \right) t^{12} \]
\[\quad + 2 \left(a_{12} v_1 v_2^3 + a_{41} v_1^5 v_2 + a_{22} v_1^3 v_2^2 + a_{31} v_1^3 v_2^2 + a_{11} a_{21} v_1 v_2^3 \right) t^{14} \]
\[\quad + 2 \left(a_{51} v_1^6 v_2 + a_{13} v_1^7 v_2 + a_{32} v_1^5 v_2 + a_{21} v_1^5 v_2 + a_{11} a_{21} v_1 v_2^3 + a_{11} a_{31} v_1^4 v_2^2 \right) t^{16} \]
\[\quad + 2 \left(a_{32} v_1^3 v_2^3 + a_{51} v_1^5 v_2 + a_1 13 v_1^5 v_2 + a_{61} v_1^7 v_2 + a_{42} v_1^5 v_2 + a_{23} v_1^3 v_2^3 \right) t^{18} \]
\[\quad + 2 \left(a_{11} a_{22} v_1^3 v_2^3 + a_{12} a_{21} v_1^3 v_2^3 + a_{11} a_{41} v_1^5 v_2 + a_{21} a_{31} v_1^5 v_2 \right) t^{18} + \cdots.\]

Example 2.13 For \(p = 2 \), the first few terms of

\[(v_1 t^2 + v_2 t^4)^2\]

\[= \left(\sum_{k \geq 1} A_k t^{2k} \right)^2 \]
\[= (A_1 t^2 + A_2 t^4 + A_3 t^6 + \cdots)^4 \]
\[= A_1^4 t^8 + 2 A_1^2 A_2 t^{10} + 2 \left(2 A_1^3 A_2 + 3 A_1^2 A_2^2 \right) t^{12} \]
\[\quad + \left(A_2^4 + 6 A_1^2 A_3 + 12 A_1 A_2 A_3 + 12 A_1^2 A_2 A_4 + 4 A_1^3 A_5 \right) t^{16} + \cdots.\]
3 BP Homology and Cohomology of $BP\langle 1 \rangle_4$ and $BP\langle 1 \rangle_6$

We focus on the prime 2. Let E be a 2-local cohomology theory. We borrow the notations and results from [RW77]:

Definition 3.1 $[v_i]$ is defined in $E_0\left(\overline{BP}_{-2(2^i-1)}\right)$ using $v_i \in \pi_{2(2^i-1)}(BP)$.

Definition 3.2 $\Delta_k = (0, \ldots, 0, 1, 0, \ldots)$ where 1 is in the k-th position.

Definition 3.3 $b_{(m)} = b_{2^m} \in E_{2^{m+1}}(BP_2)$.

Definition 3.4 In the ring of indecomposables $QE_*(BP_*)$, define

$$[v^I] b^J = [v_1^{i_1} v_2^{i_2} \ldots] \circ b_{(0)}^{j_0} \circ b_{(1)}^{j_1} \circ \ldots$$

where $I = (i_1, i_2, \ldots)$ and $J = (j_0, j_1, \ldots)$ are sequences of non-negative integers almost all zero. Note that Proposition 2.7 implies that the other b_n are redundant.

Definition 3.5 For $J = (j_0, j_1, \ldots)$, we define the length of J as $\ell(J) = j_0 + j_1 + \ldots$.

Definition 3.6 We call $[v^I] b^J$ allowable if

$$J = 2\Delta_{k_1} + 2^2 \Delta_{k_2} + \cdots + 2^n \Delta_{k_n} + J',$$

where $k_1 \leq k_2 \leq \cdots \leq k_n$ and J' is non-negative, implies $i_n = 0$.

Proposition 3.7 The allowable $[v^I] b^J (J \neq 0)$ form a basis of the free BP_*-module $QBP_*\left(\overline{BP}'_*\right)$, where \overline{BP}'_* denotes the base components of BP_*. ($BP'_k = BP_k$ for $k > 0$.)

Proposition 3.8 The $[v^I] b^J \circ b_{(0)}$ with $[v^I] b^J$ allowable (J possibly zero) form a basis of the submodule of primitives $PBP_*\left(\overline{BP}'_*\right)$.

Remark 3.9 A basis of $QBP_{2m}(BP_{2n})$, $n > 0$ is given by all allowable $[v^I] b^J$ with $m = \sum_{k \geq 0} j_k 2^k$ and $n = \sum_{k \geq 0} j_k - \sum_{k > 0} i_k (2^k - 1)$.
We need to compute \(v_1^* : E^* \left(\prod (BP) \right) \to E^* \left(\prod (BP) \right) \). These are power series rings. We compute on the indecomposables, \(Qv_1^* : QE^* \left(\prod (BP) \right) \to QE^* \left(\prod (BP) \right) \), which is dual to \(P_{v_1} : PE^* \left(\prod (BP) \right) \to PE^* \left(\prod (BP) \right) \). The latter is simply multiplication by \([v_1]\).

The double suspension factors as

\[
b_{(0)} \circ - : E_\ast \left(\prod (BP) \right) \to QE_\ast \left(\prod (BP) \right) \xrightarrow{\sim} PE_\ast \left(\prod (BP) \right) \to E_\ast \left(\prod (BP) \right)
\]

and similarly for \(PE_\ast \left(\prod (BP) \right) \). We therefore compute the homomorphism of free \(E_\ast \)-modules

\[
v_{1\ast} : QE_\ast \left(\prod (BP) \right) \to QE_\ast \left(\prod (BP) \right).
\]

We temporarily omit \(\circ \) here, as it is the only multiplication in \(QE_\ast \left(\prod (BP) \right) \).

The Ravenel-Wilson basis is not the most useful here.

Theorem 3.10 The elements \(b_i \) for \(i > 0 \) form a basis of \(QE_\ast \left(\prod (BP) \right) \) as a free \(E_\ast \)-module.

To show that a set of elements is a basis, it is sufficient to work mod \(I_{\infty} = (2, v_1, v_2, \ldots) \) and check that we have a basis over \(\mathbb{F}_p \), according to the Nakayama Lemma. We introduce the Bendersky generators \(h_i \) of \(QE_\ast (BP_{\ast}) \) (see [B82]). They may be defined by

\[
b(x) = h_0 + [F] h_1 x + [F] h_2 x^2 + [F] h_3 x^3 + [F] \cdots
\]

where \([F]\) denotes the formal group law using the right \(BP_{\ast}\)-action by the elements \([v_i]\). If we replace each \(b_{(i)} \) by \(h_i \) in the Ravenel-Wilson basis of \(QE_\ast (BP_{\ast}) \), we obtain another basis (since \(h_i \equiv b_{(i)} \mod I_{\infty} \), see below.) When we map to \(\prod (BP) \), the resulting basis of \(E_\ast \left(\prod (BP) \right) \) consists of the elements

\[
[v_1^k] h_{i_0} h_{i_1} \cdots h_{i_k}
\]

where \(k \geq 0 \) and \(i_0 < i_1 < i_2 < \cdots < i_k \).

The theorem follows from the following lemma.
Lemma 3.11 Given $n > 0$, write n in binary form as $n = 2^{i_0} + 2^{i_1} + \cdots + 2^{i_k}$, with $i_0 < i_1 < \cdots < i_k$. Then in $QE_*(BP_2)$,

$$b_n \equiv [v_k^i] h_{i_0} h_{i_1} h_{i_2} \cdots h_{i_k} \mod (I_\infty + ([v_2], [v_3], \cdots)).$$

Proof. The main relation (see Proposition 2.7) reduces to

$$0 \equiv b([2](x)) \equiv [v_1] b(x)^2 \equiv \sum_i [v_1] b_i^2 x^{2i}.$$

The coefficient of $x^{2^{i+1}}$ yields $[v_1] b_i^2 \equiv 0$.

We deduce by induction on i that $[v_1] h_i^2 \equiv 0$, starting from $b(0) = h_0$. When we expand (2) and take the coefficients of x^{2^i}, we get $b_i h_i + \text{terms with a factor } [v_1] h_j^2$ for some $j < i$. Hence $b_i \equiv h_i$ and $[v_1] h_i^2 \equiv 0$.

If $[v_1] x^2 \equiv 0$ and $[v_1] y^2 \equiv 0$, the right formal group law takes the form $x + [F] y \equiv x + y + [v_1] xy$. Then the coefficient of x^n in (2) yields b_n on the left, and the only surviving term on the right is $[v_1^k] h_{i_0} h_{i_1} h_{i_2} \cdots h_{i_k}$. ■

Lemma 3.12 In $QE_*(BP(1)_2)$, each b_n can be expressed as a polynomial in the elements $b(i)$ and $[v_1]$, with no v_1 or v_2.

Proof. The coefficient of x^n in (2) expresses b_n as a polynomial in the h_i and $[v_1]$. If $n = 2^i$, we can use $b(i) = h_i + \cdots$ to express h_i as a polynomial in $b(i)$, the h_j for $j < i$, and $[v_1]$, and hence inductively as a polynomial in the $b(j)$ and $[v_1]$. ■

Remark 3.13 If n is not a power of 2, this polynomial is divisible by $[v_1]$.

Next, we consider $QE_*(BP(1)_4)$.

Lemma 3.14 If n is not a power of 2, there is an element $\hat{b}_n \in QE_*(BP(1)_4)$ such that $[v_1] \hat{b}_n = b_n$ in $QE_*(BP(1)_2)$.

Proof. When we expand (2) and take the coefficient of x^n to find b_n, every term on the right (working mod $[v_2], [v_3], \cdots$) contains a factor $[v_1]$. ■

In particular, by Lemma 3.11,

$$\hat{b}_n \equiv [v_1^{k-1}] h_{i_0} h_{i_1} h_{i_2} \cdots h_{i_k} \mod I_\infty.$$
The only missing elements from the modified Ravenel-Wilson basis of $QE_* \left(\mathbb{BP} \langle 1 \rangle_4 \right)$ are the elements $h^2_i \equiv b^2_{(i)}$ for $i \geq 0$. We therefore take as a basis of $QE_* \left(\mathbb{BP} \langle 1 \rangle_4 \right)$, the elements h_n for n not a power of 2 and the elements $b^2_{(i)}$. We now compute v_{1*}.

The main relation, mod 2, is

$$\sum_q b_q ([2] (x))^q = b ([2] (x)) \equiv [v_1] b (x)^2 \equiv \sum_i [v_1] b^2_i x^{2i}.$$

Recall that $([2] (x))^q = \sum_{k \geq 1} C_{q,k} x^{2k}$. Take coefficients of x^{2i+1}. Then

$$\begin{cases}
 v_1 b^2_{(i)} = [v_1] b^2_{(i)} = \sum_{q \leq 2^i} C_{q,2} b_q, & \text{for } i \geq 0; \\
 v_1 \hat{b}_n = [v_1] \hat{b}_n = b_n, & \text{for } n \text{ not a power of } 2
\end{cases} \quad (3)$$

gives v_{1*} precisely in terms of our bases.

We summarize the relationship between E_*, QE_* and PE_* in a diagram:

$$\begin{array}{cccc}
E_* \left(\mathbb{BP} \langle 1 \rangle_4 \right) & \xrightarrow{v_{1*}} & E_* \left(\mathbb{BP} \langle 1 \rangle_2 \right) \\
\downarrow & & \downarrow \\
QE_* \left(\mathbb{BP} \langle 1 \rangle_4 \right) & \xrightarrow{Qv_{1*}} & QE_* \left(\mathbb{BP} \langle 1 \rangle_2 \right) \\
\cong \downarrow \circ b_{(0)} & \cong \downarrow \\
PE_* \left(\mathbb{BP} \langle 1 \rangle_6 \right) & \xrightarrow{Pv_{1*}} & PE_* \left(\mathbb{BP} \langle 1 \rangle_4 \right) \\
\cap & \cap & \cap \\
E_* \left(\mathbb{BP} \langle 1 \rangle_6 \right) & \xrightarrow{v_{1*}} & E_* \left(\mathbb{BP} \langle 1 \rangle_4 \right) \xrightarrow{\langle x_{(i)}, - \rangle} E_* \\
\downarrow & & \downarrow \\
QE_* \left(\mathbb{BP} \langle 1 \rangle_6 \right) & \xrightarrow{Qv_{1*}} & QE_* \left(\mathbb{BP} \langle 1 \rangle_4 \right)
\end{array} \quad (4)$$

3.1 Generators of Cohomology

We return to the primitives. Our basis of $PE_* \left(\mathbb{BP} \langle 1 \rangle_4 \right) = PM_4 \oplus PR_4$ consists of two parts:

1. Elements $b_{(0)} \circ b_n$ for n not a power of 2, which span the submodule PM_4.

2. Elements $b_{(0)} \circ b_{(i)}$ for $i \geq 0$, which span the submodule PR_4.

Our basis of $PE_* \left(\mathbb{BP} \langle 1 \rangle_6 \right) = PM_6 \oplus PR_6$ consists of two parts:
1. Elements $b(0) \circ \hat{b}_n$ for n not a power of 2, which span the submodule PM_6.

2. Elements $b(0) \circ b^{(i)}_2$ for $i \geq 0$, which span the submodule PR_6.

In terms of these bases, v_1 is given by

$$ v_1 = \begin{cases} v_1 \circ b(0) \circ \hat{b}_n = [v_1] \circ b(0) \circ \hat{b}_n = b(0) \circ b_n, & \text{for } n \text{ not a power of 2} \\ v_1 \circ b(0) \circ b^{(i)}_2 = [v_1] \circ b(0) \circ b^{(i)}_2 = \sum_{q \leq 2^i} C_{q,2^i} b(0) \circ b_q. \end{cases} \tag{5} $$

Note that $v_1 \circ b^{(i)}_2$ contains terms in PM_4.

Now, we can consider the duals $QE^* \left(BP \langle 1 \rangle_4 \right)$ and $QE^* \left(BP \langle 1 \rangle_6 \right)$, the indecomposables of the algebras $E^* \left(BP \langle 1 \rangle_4 \right)$ and $E^* \left(BP \langle 1 \rangle_6 \right)$.

Proposition 3.15 (In [RWY] Page 6) Since, for $k \leq 2 (2^q + 2^{q-1} + \cdots + 2 + 1)$, the spaces $BP \langle q \rangle_k$ are all torsion-free for ordinary homology, we know that they are BP_*-free and the Brown-Peterson cohomology is just the BP^*-dual. Likewise, the induced cohomology homomorphisms are just the dual homomorphisms.

Proposition 3.16 (In [RWY] Section 8.5 at Page 39) Both $BP^* \left(BP \langle 1 \rangle_4 \right)$ and $BP^* \left(BP \langle 1 \rangle_6 \right)$ are power series rings on generators dual to the primitives in the BP-homology.

Dualizing to cohomology, we write $E^* \left(BP \langle 1 \rangle_4 \right) = A \otimes M$, where A and M are power series rings generated by the duals of PR_4 and PM_4, respectively, and $E^* \left(BP \langle 1 \rangle_6 \right) = B \otimes N$, where B and N are power series rings generated by the duals of PR_6 and PM_6, respectively. Since $v_1^*: PM_6 \cong PM_4$ is an isomorphism, so is $Qv_1^*: QM \to QN$ (considered as quotient modules). So

$$ \text{coker} \left[Qv_1^*: QA \oplus QM \to QB \oplus QN \right] \cong \text{coker} \left[Qv_1^*: QA \to QB \right]. $$

We therefore limit attention to A and B. Define generators $x(i) \in A$ dual to $b(0) \circ b(i)$ and $y(i) \in B$ dual to $b(0) \circ b^{(i)}_2$, so that

$$ A = E^* \left[[x(i) : i \geq 0] \right] $$

16
and

\[B = E^* \left[[y(i) : i \geq 0] \right]. \]

It is to be understood that all such rings allow any infinite linear combination of monomials with coefficients in \(E^* \) of appropriate degrees. Note that the degree of \(x(i) \) is \(2(1 + 2^i) \) and the degree of \(y(i) \) is \(2(1 + 2^{i+1}) \). Then dualizing (5), in \(Qv_1^*: QE^* \left(BP \langle 1 \rangle_4 \right) \to QE^* \left(BP \langle 1 \rangle_6 \right) \), we have

\[v_1^* (x(i)) = \sum_{j \geq i} C_{2^i, 2j} y(j). \]

Recall that \(C_{2^i, 2j} = A_{2^j-i}^{2^i} = A_{(j-i)}^{2^i} \), where we write \(A(i) = A_{2^i} \), and that \(A(0) = A_1 = v_1 \) and \(A(1) = A_2 = v_2 \). Then, for \(i \geq 0 \), \(Qv_1^*: QA \to QB \) is given by

\[v_1^* (x(i)) = v_1^{2^i} y(i) + v_2^{2^i} y(i+1) + \sum_{k \geq 2} A_{(k)}^{2^i} y(i+k). \] (6)

Also,

\[v_1^* (u_n) = w_n + \sum_j C_{n, 2j} y(j), \]

where \(u_n \) is dual to \(b(0) \circ b_n \) and \(w_n \) is dual to \(b(0) \circ \hat{b}_n \).

3.2 The Module \(QE^* (K (\mathbb{Z}, 3)) \)

We consider the indecomposables of the algebra \(E^* (K (\mathbb{Z}, 3)) \), where \(E = E (1, 2) \). Put \(z(i) = f^* (y(i)) \in Q = QE^* (K (\mathbb{Z}, 3)) \); these elements generate the \(E^* \)-module topologically, with respect to the \(z \)-filtration in which \(F^n = F^n Q \) consists of all elements \(\sum_{k \geq n} d_k z(k) \), with \(d_k \in E^* \). From (6), we have the relations

\[v_1^{2^i} z(i) + v_2^{2^i} z(i+1) + \sum_{k \geq 2} A_{(k)}^{2^i} z(i+k) = 0 \]

for \(i \geq 0 \). Note that for \(k \geq 2 \), \(A_{(k)} \) is divisible by \(v_1 v_2 \); write \(A_{(k)} = v_1 v_2 A'_{(k)} \).

We also have the \(v_1 \)-filtration, defined by the submodules \(v_1^k Q \). Since \(v_2 \) is invertible, we may rewrite the above relation as

\[z(i+1) = v_1^{2^i} \left(v_2^{-2^i} z(i) + \sum_{k \geq 2} \left(A'_{(k)} \right)^{2^i} z(i+k) \right). \]
Lemma 3.17 $Q/v_1^{2n}Q$ is a free $E^*/(v_1^{2n})$-module generated by $z(0)$.

Proof. It is easy to see that $z(0)$ generates $Q/v_1^{2n}Q$. We have $Q = E^*z(0) + v_1Q$. Multiply by v_1^i; then

$$E^*z(0) + v_1^iQ = E^*z(0) + v_1^iE^*z(0) + v_1^{i+1}Q = E^*z(0) + v_1^{i+1}Q.$$

By induction,

$$Q = E^*z(0) + v_1Q = E^*z(0) + v_1^{2n}Q.$$

To see that there are no relations, let F be the free R-module on generators y_0, y_1, \ldots, y_m, considered as a quotient module of $QE^*(BP \langle 1 \rangle_6)$ via $q : QE^*(BP \langle 1 \rangle_6) \rightarrow F$, where for convenience we write $R = E^*/(v_1^{2n})$. We note that $Q/v_1^{2n}Q$ is a quotient of F. Suppose $cz(0) = 0$ in $Q/v_1^{2n}Q$, where $c \in R$. Since $qv_1^i(x) = 0$ for $i \geq n$, this lifts to a relation

$$cy(0) = \sum_{i=0}^{n-1} c_iqv_1^i(x(i)) = \sum_{i=0}^{n-1} c_i \left(v_1^i y(i) + v_2^i y(i+1) + \sum_{k=2}^{n-i} v_1^i v_2^i (A'_{(k)})^2 y(i+k) \right)$$

in F, for some coefficients $c_i \in R$. The coefficient of $y(0)$ gives $c = v_1c_0$. The coefficient of $y(1)$ gives $0 = v_1^2c_1 + v_2c_0$, or $c_0 = v_1^2v_2^{-1}c_1$. We show by induction on i that $c_{i-1} = v_1^i v_2^{-2i-1}(1 + a_i)c_i$ for $0 < i \leq n - 1$, for some $a_i \in (v_1) \subset R$. Assume this holds for $i < m$. The coefficient of $y(m)$, where $0 < m \leq n - 1$, in the above relation gives

$$0 = v_1^{2m}c_m + v_2^{2m-1}c_{m-1} + \sum_{k=2}^{m} v_1^{2m-k} v_2^{2m-k} (A'_{(k)})^2 c_{m-k}$$

where by the induction hypothesis we express each c_{m-k} in terms of c_{m-1} and $A \in R$. Now $1 + v_1A$ is invertible in R by $(1 + v_1A)^{-1} = 1 + a_m$, where $a_m = \sum_{i=1}^{2m-1} v_1^i A^i$, so that $c_{m-1} = v_1^{m}v_2^{-2m-1}(1 + a_m)c_m$.

The same argument applies when $m = n$, except that there is no c_n, to yield $c_{n-1} = 0$. Then $c_i = 0$ for all i and $c = v_1c_0 = 0$. ■

Theorem 3.18 The z-filtration and the v_1-filtration define the same topology on $Q = QE^*(K(Z, 3))$. Q is the free $\mathbb{F}_2 [v_2, v_2^{-1}] [[v_1]]$-module generated by $z(0)$.
Proof. We have already seen that $z_{(i+1)} \in \mathbb{v}^2_1 Q$ for all $i \geq 0$ so that $F^n \subset \mathbb{v}^{2n-1}_1 Q$. Conversely, $\mathbb{v}^{2n-1}_1 Q \subset F^n$. This follows from $\mathbb{v}^{2n-2^i}_1 \epsilon_{(i)} \in F^n$ for $0 \leq i \leq n$, by downward induction on i, starting from $i = n$. For the induction step, we multiply the above relation by $\mathbb{v}^{2n-2^{i+1}}_1$.

We know the z-filtration is complete, being a quotient of the complete filtered E^*-module $QE_* \left(\mathbb{BP} \langle 1 \rangle_6 \right)$. By the above, the v_1-filtration is also complete, and

$$Q = \lim_n Q / \mathbb{v}^{2n}_1 Q \cong \lim_n \mathbb{F}_2 \left[v_2, v_2^{-1} \right] \left[v_1 \right] / \left(\mathbb{v}^{2n}_1 \right) = \mathbb{F}_2 \left[v_2, v_2^{-1} \right] \left[[v_1] \right].$$

We would like to extend this result to the whole algebra $E^* (K (\mathbb{Z}, 3))$.

3.3 Bases of Homology and Cohomology

We need to extend bases of $PE_* \left(\mathbb{BP} \langle 1 \rangle_6 \right)$ and $PE_* \left(\mathbb{BP} \langle 1 \rangle_4 \right)$ to $E_* \left(\mathbb{BP} \langle 1 \rangle_6 \right)$ and $E_* \left(\mathbb{BP} \langle 1 \rangle_4 \right)$ in order to define $x_{(i)}$ and $y_{(i)}$ as elements of $E_* \left(\mathbb{BP} \langle 1 \rangle_4 \right)$ and $E_* \left(\mathbb{BP} \langle 1 \rangle_6 \right)$. There is a standard way to do this.

Given a monomial $c \in E_* \left(\mathbb{BP} \langle 1 \rangle_6 \right)$ in the elements $[v_1, b_{(i)}]$ and b_n, define Vc by replacing each $b_{(i)}$ by $b_{(i-1)}$ and each b_n by $b_{n/2}$, taking $Vc = 0$ if any $i = 0$ or any n is odd. (This depends on how c is written as a monomial, but the choice does not matter; the Verschiebung V is only defined naturally mod I_∞.)

Lemma 3.19 For any $y \in E_* \left(\mathbb{BP} \langle 1 \rangle_6 \right)$ and monomial c as above,

$$\langle y^2, c \rangle = \langle y, Vc \rangle^2.$$

Proof. $\langle y^2, c \rangle = \langle \psi^* (y \otimes y), c \rangle = \langle y \otimes y, \psi c \rangle = \sum \langle y, c' \rangle \langle y, c'' \rangle$, where $\psi c = \Sigma c' \subset c''$. Suppose that

$$c = [v^m_1] \circ b_{i_1} \circ b_{i_2} \circ \cdots \circ b_{i_k}.$$

Then

$$\psi c = \sum [v^m_1] \circ b_{j_1} \circ b_{j_2} \circ \cdots \circ b_{j_k} \otimes [v^m_1] \circ b_{i_1-j_1} \circ b_{i_2-j_2} \circ \cdots \circ b_{i_k-j_k},$$

summing over all j_1, j_2, \cdots, j_k, $0 \leq j_r \leq i_r$, and

$$\langle y^2, c \rangle = \sum \langle y, [v^m_1] \circ b_{j_1} \circ b_{j_2} \circ \cdots \circ b_{j_k} \rangle \langle y, [v^m_1] \circ b_{i_1-j_1} \circ b_{i_2-j_2} \circ \cdots \circ b_{i_k-j_k} \rangle.$$
Since we are working mod 2, all terms cancel in pairs except for the desired middle term \(\langle y, Vc \rangle \langle y, Vc \rangle\). The same proof works for \(*\)-products of such monomials \(c\). □

We construct a basis of \(E_*(BP \langle 1 \rangle_6)\) as follows. We have a basis of \(PE_*(BP \langle 1 \rangle_6)\) consisting of the elements \(b(0) \circ b(2)_{(i)}^2\) (for \(i \geq 0\)) and \(b(0) \circ \hat{b}_n\) (for \(n\) not a power of 2). We adjoin new basis elements \(b(k) \circ b_{(k+1)}^2\) (for \(i \geq 0\) and \(k > 0\)) and \(b(k) \circ \hat{b}_{n,k}\) (for \(n\) not a power of 2 and \(k > 0\)), where \(V^k \hat{b}_{n,k} = \hat{b}_n\). The desired basis of \(E_*(BP \langle 1 \rangle_6)\) consists of all \(*\)-products of these basis elements (including the empty product 1), without repetition of factors.

We define \(y_{(i)}\) as dual to \(b(0) \circ b(2)_{(i)}^2\) (for \(i \geq 0\)). The lemma tells us that, for all \(i, k \geq 0\), \(y_{2}^{2k}\) is dual to \(b(k) \circ b(2)_{(k+i)}^2\). (The duality for other monomials in the \(y\)'s is far more obscure.) We also define \(w_n\) as dual to \(b(0) \circ \hat{b}_n\) (for \(n\) not a power of 2). Then we have \(E_*(BP \langle 1 \rangle_6) = B \hat{\otimes} N\), where \(B = E_*[[y_{(i)} : i \geq 0]]\) and \(N = E_*[[w_n : n \neq 2^r]]\).

A similar process extends the basis of \(PE_*(BP \langle 1 \rangle_4)\) to a basis of \(E_*(BP \langle 1 \rangle_4)\). We define \(x_{(i)}\) as dual to \(b(0) \circ b(i)\) and \(u_n\) as dual to \(b(0) \circ b_n\). Then we have \(E_*(BP \langle 1 \rangle_4) = A \hat{\otimes} M\), where \(A = E_*[[x_{(i)} : i \geq 0]]\) and \(M = E_*[[u_n : n \neq 2^r]]\).

Proposition 3.20 We have a short exact sequence of (completed) Hopf algebras

\[
E^* \leftarrow E^*(K(\mathbb{Z}, 3)) \leftarrow E^*[[y_{(i)} : i \geq 0]] \leftarrow E^*[[x_{(i)} : i \geq 0]] \leftarrow E^*.
\]

4 \(E(1,2)^*(K(\mathbb{Z}, 3))\)

In this chapter, we assume that \(E\) is \(E(1,2)\).

We wish to compute \(v_1^*: A \hat{\otimes} M \rightarrow B \hat{\otimes} N\). This is more complicated than \(Qv_1^*\) because when we take decomposables into account, \(A\) no longer maps into \(B\). We restate (6), this time including the decomposables.

Lemma 4.1 In \(E(1,2)^*(BP \langle 1 \rangle_6)\),

\[
v_1^* (x_{(i)}) = v_1^{2i} y_{(i)} + v_2^{2i} y_{(i+1)} + \sum_{k \geq 2} A^{2i}_{(k)} y_{(i+k)} + D_{(i)}
\]

and

\[
v_1^* (u_n) = w_n + \sum_j C_{n,2} y_{(j)} + D_n
\]

20
where $D_{(i)}$ and D_n are decomposable.

It is easy to simplify the second equation. Because we are working in formal power series algebras, to make a valid change of generators, it is only necessary to check that it is invertible on the indecomposables. Here we simply replace w_n by $w'_n = v_1^* (u_n)$, so that the second equation becomes $v_1^* (u_n) = w'_n$. Then in the quotient algebra $E (1, 2)^* (K (Z, 3))$, any occurrence of w'_n in $D_{(i)}$ is replaced by zero.

First, we easily recover a well-known result.

Proposition 4.2 $K (2)^* (K (Z, 3)) \cong K (2)^* \left[[y_0] \right]$.

Proof. In this case, (6) simplifies to $v_1^* (x_{(i)}) = v_2^2 y_{(i+1)}$. But, v_2 is invertible.

4.1 The Bockstein Spectral Sequence

We have stable cofibrations

$$E (1, 2) \xrightarrow{v_1} E (1, 2) \longrightarrow K (2).$$

The induced long exact sequence is

$$\cdots \longrightarrow E (1, 2)^* (K (Z, 3)) \xrightarrow{v_1} E (1, 2)^* (K (Z, 3)) \longrightarrow K (2)^* (K (Z, 3)) \xrightarrow{\partial} E (1, 2)^* (K (Z, 3)) \longrightarrow \cdots.$$

Proposition 4.3 (In [RWY] Lemma 5.1 at Page 174) Let X be a space. Let $0 \leq k \leq n$ and $n > 0$. If $K (n)^* (X)$ is even-dimensional, then $E (k, n)^* (X)$ is even-dimensional and has no v_k torsion ($v_0 = p$).

According to the above section, we know that (ignoring the invertible element v_2)

$$K (2)^* (K (Z, 3)) \cong F_2 \left[[y_0] \right]$$

is even-dimensional. This implies $K (2)^* (K (Z, 3))$ is even-dimensional. Therefore, $E (1, 2)^* (K (Z, 3))$ is even-dimensional and has no v_1 torsion. Hence, the long exact sequence breaks into the short exact sequence of graded groups,

$$0 \longrightarrow E (1, 2)^* (K (Z, 3)) \xrightarrow{v_1} E (1, 2)^* (K (Z, 3)) \longrightarrow K (2)^* (K (Z, 3)) \xrightarrow{\partial} 0.$$
The Bockstein spectral sequence degenerates.

The filtration of the Bockstein spectral sequence provides a natural topology. We have the ideal in $E(1, 2)^*(K(Z, 3))$

$$(v_i^1) = \text{im}\left(E(1, 2)^*(K(Z, 3)) \xrightarrow{v_1} E(1, 2)^*(K(Z, 3)) \xrightarrow{v_1} \cdots \xrightarrow{v_1} E(1, 2)^*(K(Z, 3)) \right)$$

where we multiply by v_i^1. This gives us a decreasing filtration by ideals $E(1, 2)^*(K(Z, 3)) = (v_0^1) \supseteq (v_1^1) \supseteq (v_2^1) \supseteq \cdots$, where each quotient is a copy of $K(2)^*(K(Z, 3)) = K(2)^*[y(0)]$. In effect, this gives a lower bound for $E(1, 2)^*(K(Z, 3))$. It gives no information on $(v_1^\infty) = \bigcap_n (v_n^1)$.

Definition 4.4 The topology on $E(1, 2)^*(K(Z, 3))$ from the Bockstein spectral sequence has a basis consisting of the cosets $x + (v_i^1)$ for all $x \in E(1, 2)^*(K(Z, 3))$ and all i.

4.2 Topology of Cohomology in $E(1, 2)^*(K(Z, 3))$

We take $E = E(1, 2)$ in this section.

Definition 4.5 Define $z_{(i)} = f^*(y_{(i)})$ in $E^*(K(Z, 3))$ for all $i \geq 0$.

We treat $E^*(K(Z, 3))$ as the cokernel (in the sense of algebras) of the algebra homomorphism $v_1^*: A \rightarrow B$, considered as a quotient of $v_1^*: E^*(BP \langle 1 \rangle_4) \rightarrow E^*(BP \langle 1 \rangle_6)$. Thus, the elements $z_{(i)}$ generate $E^*(K(Z, 3))$ topologically. The formula for $v_1^*(x_{(i)})$ provides the relation

$$v_1^{2i}z_{(i)} + v_2^{2i}z_{(i+1)} + \sum_{j \geq i+2} A_{(j-i)}^{2i}z_{(j)} = D_{(i)},$$

where $D_{(i)}$ is decomposable.

We have two topologies on $E^*(K(Z, 3))$. The first, from the filtration by powers of the ideal (v_1), was discussed in Section 4.1. This is the v_1-topology. We have good information on the quotients by (v_1^n), but no information on (v_1^∞). The second is inherited from the topology on $E^*(BP \langle 1 \rangle_6)$ as dual to the algebra $E_* (BP \langle 1 \rangle_6)$.
In the quotient by a basic neighborhood of 0, we retain only finitely many of the monomials in the \(z_{(i)} \). We call this the \(z \)-topology.

We compare these two topologies on \(E^* (K(\mathbb{Z}, 3)) \). They are not the same. Let \(Z \) be the augmentation ideal generated topologically by all the \(z_{(i)} \). Below, we display schematically the \(v_1 \)-filtration and the filtration by (completed) powers of \(Z \), where we treat \(\mathbb{F}_2 [v_2, v_2^{-1}] \) as the graded ground field and suppress it.

<table>
<thead>
<tr>
<th>(\cdots)</th>
<th>(z_3(0))</th>
<th>(z_2(0))</th>
<th>(z(0))</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>(z(1))</td>
<td>(v_1)</td>
</tr>
<tr>
<td></td>
<td>(z_2(1))</td>
<td></td>
<td>(v_1^2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(z_3(1))</td>
<td>(z(2))</td>
<td>(v_1^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

As with any path-connected space, there is a canonical \(E^* \)-module decomposition \(E^* (K(\mathbb{Z}, 3)) \cong E^* 1 \oplus Z \). It is obvious that no power of \(v_1 \) lies in \(Z \), and Section 4.1 shows that no power of \(z_{(0)} \) lies in \((v_1) \).

We need another coarser filtration that we call the \(z_+ \)-filtration. We filter \(E^* (K(\mathbb{Z}, 3)) \) by ideals generated topologically by all except finitely many monomials in the \(z_{(i)} \) for \(i > 0 \). This is again a complete filtration, being a quotient of the corresponding \(y_+ \)-filtration on \(B \) indicated by writing \(B = (E^* [[y_{(0)}]]) [[y_{(i)} : i > 0]] \).

Lemma 4.6 The \(v_1 \)-filtration and the \(z_+ \)-filtration define the same topology on the augmentation ideal \(Z \).

Proof. A basic neighborhood \(U \) if 0 in the \(z_+ \)-filtration is the ideal generated (topologically) by the elements \(z_{(i)} \) for \(i \geq k \) and \(Z^m \), for some \(k \) and \(m \). We saw already in the proof of Theorem 3.18 that \(v_1^{2k-1} z_{(i)} \in U + Z^2 \) for all \(i \), i.e., \(v_1^{2k-1} Z \subset U + Z^2 \). Then \(v_1^{2k-1} Z^j \subset U + Z^{j+1} \) for all \(j \), and

\[
\begin{align*}
\left(v_1^{(m-1)(2k-1)}Z \right) & \subset U + v_1^{(m-2)(2k-1)}Z^2 \subset U + v_1^{(m-3)(2k-1)}Z^3 \subset \cdots \\
& \subset U + v_1^{2k-1}Z^{m-1} \subset U + Z^m = U.
\end{align*}
\]

Conversely, given \(n \), we have seen that \(z_{(i)} \in (v_1^n) \) if \(2^{i-1} \geq n \) and that \(z_{(i)}^n \in (v_1^n) \) for all \(i > 0 \). Thus the \(z_+ \)-neighborhood \(U \) lies in \((v_1^n) \) if we take \(m = n \) and choose \(k \) such that \(2^{k-1} \geq n \). ■
Remark 4.7 The \(v_1\)-filtration is clearly not complete in the summand \(E^*1\). Both the \(z\)- and \(z_+\)-filtrations are complete, but make the \(E^*1\) summand discrete.

Corollary 4.8 The \(z\)-filtration and the filtration consisting of the ideals \(((v_1^i) \cap Z) + (z_j(0))\) for \(i, j \geq 0\) define the same topology on \(E^* (K(\mathbb{Z}, 3))\).

Proof. A basic \(z\)-neighborhood of 0 has the form \(U + (z_j(0))\), where \(U\) is a \(z_+\)-neighborhood of 0. Choose \(i\) such that \((v_1^i) \cap Z \subset U\). Then \(((v_1^i) \cap Z) + (z_j(0)) \subset U + (z_j(0))\).

Conversely, given an ideal \(((v_1^i) \cap Z) + (z_j(0))\), we can find a \(z_+\)-neighborhood \(U\) of 0 such that \(U \subset (v_1^i) \cap Z\). Then we have a \(z\)-neighborhood \(U + (z_j(0)) \subset ((v_1^i) \cap Z) + (z_j(0))\). ■

Theorem 4.9 As a topological ring, \(E(1, 2)^* (K(\mathbb{Z}, 3)) \cong E(1, 2)^* [[z(0)]]\), where the completion indicates \(v_1\)-completion except on the \(E^*\)-module summand \(E^*1\) generated by 1. Precisely,

\[E(1, 2)^* (K(\mathbb{Z}, 3)) \cong E^*1 \oplus \mathbb{F}_2 [v_2, v_2^{-1}] [[v_1, z(0)]] z(0). \]

Proof. By Lemma 4.6, \(Z\) is complete under the \(v_1\)-filtration. Section 4.1 shows that \(E^* (K(\mathbb{Z}, 3)) / (v_1^n) \cong \mathbb{F}_2 [v_2, v_2^{-1}] [[z(0)]] [v_1] / (v_1^n).\) Hence

\[
Z = \lim_n Z / v_1^n Z = \left(\lim_n \mathbb{F}_2 [v_2, v_2^{-1}] [[z(0)]] [v_1] / (v_1^n) \right) z(0)
\]

\[
= \mathbb{F}_2 [v_2, v_2^{-1}] [[z(0)]] [[v_1]] z(0).
\]

The topology on \(E^*(K(\mathbb{Z}, 3))\) is given by the \(z\)-filtration, or, in view of Corollary 4.8, by the ideals \(((v_1^i) \cap Z) + (z_j(0))\). We can now rewrite \((v_1^i) \cap Z\) as \((v_1^i z(0))\). The summand \(E^*1\) is simply a copy of \(E^*\), with no completion. ■

4.3 Relations in \(E(1, 2)^* (K(\mathbb{Z}, 3))\)

Furthermore, we try to generalize Tamanoi’s result to higher degree. Therefore, we change our generators a little to get a better looking formula. We note that we do not use the invertibility of \(v_2\). Again, we write \(E = E(1, 2)\).
Earlier, we showed that in $E^* \left(BP \langle 1 \rangle_6 \right)$,

$$v_1^* \left(x_{(i)} \right) = v_1^{2^i} y_{(i)} + v_2^{2^i} y_{(i+1)} + \sum_{j \geq i+2} A_{j-i}^2 y_{(j)} + D_{(i)}$$

for $i \geq 0$, with $D_{(i)}$ decomposable. It would be desirable to change generators to eliminate the unwanted terms. We can do the following:

Theorem 4.10 There are alternate generators $y'_{(i)}$ of the algebra B such that $B = E^* \left[\left[y'_{(i)} : i \geq 0 \right] \right]$ and

$$v_1^* \left(x_{(i)} \right) = v_1^{2^i} y'_{(i)} + v_2^{2^i} y'_{(i+1)} + D_{(i)}$$

for all $i \geq 0$, where $D_{(i)}$ is decomposable.

Instead of changing generators directly, it is more convenient to change the basis of $QE \left(BP \langle 1 \rangle_6 \right)$ before dualizing; then the change of generators will automatically be continuous. First, we need to improve a previous observation.

Lemma 4.11 For $k \geq 2$, $A_{(k)}$ is divisible by v_1^2.

Proof. Recall from Lemma 2.10 that $A_{(k)}$ is the coefficient of $x^{2^{k+1}}$ in

$$[2] (x) = v_1 x^2 + v_2 x^4 = v_1 x^2 + v_2 x^4 + \sum_{i,j \geq 1} a_{ij} v_1^i v_2^j x^{2i+4j}.$$

Modulo v_1^2, the only terms that survive are $v_1 x^2 + v_2 x^4 + \sum_{j \geq 1} a_{1j} v_1 v_2^j x^{4j+2}$. There is no term in x^{2n} for $n \geq 3$. \n
We consider $Qv_{1*} : QE_* \left(BP \langle 1 \rangle_4 \right) \rightarrow QE_* \left(BP \langle 1 \rangle_2 \right)$, as before. Again, we suppress \circ here, as it is the only multiplication.

Lemma 4.12 In $QE_* \left(BP \langle 1 \rangle_4 \right)$, there are elements $d_{(i)}$ and $e_{(i)}$ such that:

(a) $v_{1*} \left(d_{(i)} \right) = v_1^{2^{i+1}-1} b_{(i)}$ for all $i \geq 0$.

(b) The elements $e_{(i)}$ for all $i \geq 0$ form a basis, and satisfy

$$v_{1*} \left(e_{(i)} \right) = v_1^{2^i} b_{(i)} + v_2^{2^{i-1}} b_{(i-1)}.$$

25
Proof. We construct \(d_{(i)} \) and \(e_{(i)} \) inductively, starting from \(d_{(0)} = e_{(0)} = b_{(0)}^2 \).

Suppose we have \(d_{(i)} \) for \(i < k \). We recall from (6) that

\[
v_{1*} \left(b_{(k)}^2 \right) = v_1^{2k} b_{(k)} + v_2^{2k-1} y_{(k-1)} + \sum_{i \geq 2} A_{(i)}^{2k-i} y_{(k-i)}.
\]

By induction,

\[
v_{1*} \left(\left(v_1^{2k-i+1+1} A_{(i)}^{2k-i} \right) d_{(k-i)} \right) = A_{(i)}^{2k-i} b_{(k-i)},
\]

where we note that the coefficient of \(d_{(k-i)} \) lies in \(E_* \). We set

\[
e_{(k)} = b_{(k)}^2 + \sum_{i \geq 2} \left(v_1^{-2k-i+1+1} A_{(i)}^{2k-i} \right) d_{(k-i)},
\]

ty to cancel out the unwanted terms. To remove the \(b_{(k-1)} \) term also, we multiply by a further \(v_1^{2k-1} \) and set \(d_{(k)} = v_1^{2k-1} e_{(k)} + v_2^{2k-1} d_{(k-1)} \), so that

\[
v_{1*} \left(d_{(k)} \right) = v_1^{2k-1+2k} b_{(k)} + v_1^{2k-1} v_2^{2k-1} b_{(k-1)} + v_1^{2k-1} v_2^{2k-1} b_{(k-1)} = v_1^{2k+1-1} b_{(k)}.
\]

\[\blacksquare\]

Remark 4.13 Closer examination of the proof shows that the elements \(e_{(i)} \) are uniquely determined by property (b).

Proof of Theorem. We proceed as before. We use the elements \(b_{(0)} \circ e_{(i)} \) as a basis of \(PE_* \left(BP \langle 1 \rangle_6 \right) \), instead of the \(b_{(0)} \circ b_{(i)}^2 \), and extend to a basis of the whole of \(E_* \left(BP \langle 1 \rangle_6 \right) \). We define \(y'_{(i)} \) dual to \(b_{(0)} \circ e_{(i)} \). The simplified formula for \(v_{1*} \left(e_{(i)} \right) \) leads to the simplified formula for \(v_{1*} \left(y'_{(i)} \right) \).

\[\blacksquare\]

Remark 4.14 This leads to a more transparent interpretation of Theorem 4.9. Put \(z'_{(i)} = f^* \left(y'_{(i)} \right) \) for each \(i \). In terms of these generators of \(E^* \left(K \langle Z, 3 \rangle \right) \), the relations become

\[
v_1^{2i} z'_{(i)} + v_2^{2i} z'_{(i+1)} = D_{(i)}.
\]

Modulo decomposables, \(z'_{(i+1)} \equiv v_1^{2i} v_2^{-2i} z'_{(i)} \), so by induction

\[
z'_{(n)} \equiv v_1^{2n-1} v_2^{2n+1} z'_{(0)}
\]

for all \(n \).

Remark 4.15 It would be desirable to find a nonlinear change of generators that would remove the terms \(D_{(i)} \) as well, but this appears far more difficult.
References

Vita

Hsin-hao Su was born in November 1972 and was raised in Taipei, Taiwan. In 1995, he received a Bachelor of Arts and Science degree in applied mathematics from Feng Chia University, Taichung, Taiwan. In 1998, he received a Master of Science degree in mathematics from National Tsing Hua University, Hsinchu, Taiwan. He enrolled in the graduate program at Johns Hopkins University in the fall of 2000. He defended this thesis on March 21, 2006.