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Abstract

This thesis has four parts;

(1) We compare the monodromy on the nearby cycles complex ψ∗∗ to the periodicity

operator in cyclic homology of a sheaf of differential operators. The nearby cycles

complex is quasi-isomorphic to the complex A∗∗ of Steenbrink that determines the

mixed Hodge structure on the nearby fibre for an algebraic degeneration over a disc.

By stacking copies of the nearby cycles complex ψ∗∗, we construct a triple complex

BC∗∗∗ whose “rows” are quasi-isomorphic to the cyclic homology complex of the sheaf

of differential operators and show that the periodicity operator on the cyclic homology

of the latter is identical to the monodromy on BC∗∗∗ induced from the ψ∗∗.

(2) We implement the arithmetic analogue of the same construction, using objects

Ki,j,k constructed by Consani to correspond to direct summands of the E0-terms of

the spectral sequence associated to the Picard-Lefschetz filtration on Steenbrink’s

complex A∗∗. In this case, we show that the periodicity operator in cyclic cohomol-

ogy of the ring of differential operators corresponds to the monodromy on Consani’s

complex.

We assemble summands Ki,j,k to form bicomplexes ϕ∗∗ and B∗∗, which correspond

to complexes ψ∗∗ and A∗∗ in part (1) respectively, together with a morphism µ :

ϕ∗∗ −→ B∗∗. Both complexes ϕ∗∗ and B∗∗ carry monodromy N and we show that

N ◦ µ− µ ◦N is homotopic to zero.

(3) We define algebraic, topological and relative K-theories of the sheaf of differential

operators on a locally Stein manifold and demonstrate a long exact sequence con-

necting them that lifts the periodicity sequence in the cyclic (hyper)homology of the

sheaf of differential operators. We also show that similar constructions may be made

for formal schemes.
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(4) We construct an “enriched archimedean complex” on the modular tower that ex-

tends Consani’s complex Ki,j,k from part (2). We show that the module of functions

with values in this complex carries a flat action of the Connes-Moscovici’s Hopf Al-

gebra H1 of codimension 1 foliations and a bimodule structure over a variant AT of

Connes-Moscovici’s modular Hecke algebra A.

Finally, we show that the enriched archimedean complex carries Rankin Cohen

brackets of all orders.

Readers: Prof. Caterina Consani (advisor), Prof. Jack Morava.
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0 Introduction

This thesis is divided into four main parts. In Chapter 3, we start by studying the

nearby cycles complex and the monodromy operator on it in the context of cyclic

homology and Connes periodicity. Thereafter, in Chapter 4, we obtain a connection

between cyclic cohomology and the archimedean complex for the cohomology of the

nearby fibre at infinity for an arithmetic variety X defined over a discrete valuation

ring Λ. The theory of the Steenbrink complex, the nearby cycles complex and the

archimedean complex for the fibre at infinity is recalled in Chapter 2.

In Chapter 5, using generalized sheaf cohomology for simplicial sheaves, we obtain

a lift of the periodicity sequence in cyclic homology to K-theory. Finally, we deal

with the Hopf Algebra H1 “of codimension 1 foliations” of Connes and Moscovici

and define an action of H1 on an archimedean complex enriched with modular forms.

As a consequence, we are able to define Rankin Cohen brackets on the enriched

archimedean complex. This is done in Chapter 6.

We will now summarize the main results of the thesis:

Nearby Cycles Complex and Cyclic Homology

The theory of cyclic (co)homology was introduced by A. Connes as a noncommutative

analogue of de Rham cohomology within the framework of noncommutative geometry.

Let A be an algebra over a field k and let HCq(A), resp. HHq(A) denote the cyclic

homology, resp. the Hochschild homology of A. One of the most interesting results in

this theory states the existence of the following periodicity exact sequence (see [14])

. . . −−−→ HHq(A)
I−−−→ HCq(A)

S−−−→ HCq−2(A) −−−→ . . . (0.0.1)
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In this section I shall consider the following geometric situation. Let j : X∗ ↪→ X be a

compactification of a smooth algebraic variety X∗ over the complex numbers. I shall

assume that the complement Y = X − X∗ is a divisor in X with normal crossings.

Then, it is well known (cfr. [23]) that the triple

(Rj∗ZX∗ , (Rj∗QX∗ , τ≤·), (Ω
·
X(log Y ),W., F

.))

and the filtered quasi-isomorphism of complexes

(Rj∗QX∗ , τ≤·)⊗ C−→(Ω·X(log Y ),W.)

determine a mixed Hodge structure on the (de Rham) cohomology H∗(X∗,C). In the

formulae above, τ≤· denotes the canonical filtration, F . is the naive filtration and W.

is the weight filtration on the complex of (sheaves of) differential forms on X with

logarithmic poles along Y .

The theory of mixed Hodge structures was originally introduced by P. Deligne and

has been subsequently generalized by J. Steenbrink (cf. [38]) to fibrations of algebraic

varieties. In the framework studied by Steenbrink, X is a non-singular complex

algebraic variety endowed with a proper map f to the unit disc D, which is smooth

everywhere except at the origin 0 ∈ D. The fibre Y = f−1(0) is assumed to be a

divisor in X with normal crossings. Let X̃∗ = X∗ ×D∗ D̃∗, where D̃∗ denotes the

universal covering of the punctured unit disc D∗ = D \ {0}. Under these hypotheses,

Steenbrink defines a limiting Hodge structure on the (de-Rham) cohomology of the

generic fibre X̃∗. In this construction, the cohomology H∗(X̃∗,C) gets identified to

the hypercohomology of a complex (A∗, d) of sheaves of differential forms on X with

logarithmic poles along Y . The complex A∗ is also equipped with a monodromy

operator N which represents the logarithm of the local monodromy map induced on
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the cohomology of X̃∗ by the process of looping around the origin 0 ∈ D.

In this thesis, we give an interpretation of the above construction in the context

of cyclic (co)homology. To obtain this result, we appeal to a well-known theorem of

M. Wodzicki (cfr [46]) stating that the Hochschild homology HHq(D(U)) of the ring

of differential operators on a Stein manifold U can be described in terms of the de

Rham cohomology of U , by means of the following isomorphisms (n = dimU)

HHq(D(U)) ∼= H2n−q
dR (U) ∀ q ≥ 0.

Moreover, the cyclic homology HCq(D(U)) decomposes as a direct sum

HCq(D(U)) ∼= H2n−q
dR (U)⊕H2n−q+2

dR (U)⊕ ... (0.0.2)

Connes’ periodicity operator

S : HCq(D(U)) −→ HCq−2(D(U))

fits into a long exact sequence similar to (0.0.1).

To apply these results in the geometric context of algebraic degenerations, we con-

sider the sheaf DX∗ of differential operators on X∗. The cyclic homology HCq(DX∗)

(resp. the Hochschild homology HHq(DX∗)) is defined using hypercohomology tech-

niques. In this way, we prove in Theorem A.3.17 that the cyclic homology HCq(DX∗)

decomposes into a direct sum H2n−q
dR (X∗) ⊕ H2n−q+2

dR (X∗) ⊕ ... in a way similar to

(0.0.2). Moreover, the periodicity operator S : HCq(DX∗) −→ HCq−2(DX∗) acts by

“dropping off” the top summand H2n−q
dR (X∗).
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One knows that Steenbrink’s complex A∗∗ is quasi-isomorphic to a resolution ψ∗∗(C):

ψ−p,q(C) = Cup ⊗ Ωq−p
X (log Y ), p, q ∈ Z≥0

of the complex of nearby cycles on X, for the constant sheaf C. I shall denote by µ :

ψ∗∗(C) −→ A∗∗ the quasi-isomorphism (cfr.[28]) connecting these two complexes. The

bi-complex ψ∗∗(C) is also endowed with a monodromy operator N . It is important to

note that such operator on ψ∗∗(C) does not agree directly with the corresponding N

on A∗∗, however one can show that the maps N ◦ µ and µ ◦N are chain homotopic.

A first link between the theory of nearby cycles and cyclic (co)homology is deter-

mined by the result of Proposition 3.8 in which we show that the columns ψp∗(C)

of the complex ψ∗∗(C) are quasi-isomorphic to Hochschild complexes of DX∗ . More

precisely, we show that the spectral sequence associated to the filtration by columns

on ψ∗∗(C) converges to the hypercohomology of ψ∗∗(C): the E1-terms being described

by Hochschild homologies. The filtration by columns on ψ∗∗(C) also coincides with

the filtration by kernels of powers of N . The result is summarized by the following

Theorem 0.1. The filtration by columns on Tot(ψ∗∗(C)) coincides with the filtration

by kernels of powers of N :

Fk(Tot(ψ
∗∗(C))) = Ker(Nk), k ≥ 0.

If Ch
∗ (DX∗) denotes the Hochschild complex of the sheaf of differential operators on

X∗, there is a quasi-isomorphism of complexes (n = dim(X∗))

Ch
∗ (DX∗) −→ GrFk (Tot(ψ∗∗(C)))[2n], ∀k ≥ 0.

Thereafter, we construct a triple complex BC∗∗∗ which consists of copies of the
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bicomplex ψ∗∗(C) “stacked vertically” in a suitable way. More precisely, we define

BCp,q,r = ψp+r,q−2r(C), p+ r ≤ 0; p, q, r ∈ Z.

Therefore, a “column” BCp∗∗ of this complex is a bi-complex constructed column-wise

by assembling copies of the columns of the complexes ψ∗∗(C): one takes a column

from each of these complexes. By construction, the complex BC∗∗∗ carries also a

monodromy operator N : BCp∗∗ → BCp+1∗∗. By mapping the “column” BCp∗∗ to the

next one BCp+1∗∗, N acts by dropping a copy of ψ0∗, (i.e. a complex quasi-isomorphic

to a Hochschild complex, in view of what I have described before Theorem 0.1).

So constructed, the bi-complexes BCp∗∗ are quasi-isomorphic to the cyclic complex of

DX∗ on which the periodicity operator S acts. In this set-up, I show that the operator

N acting columnwise on BC∗∗∗ agrees in cohomology with the periodicity operator S

on the cyclic theory of DX∗ . This result is summarized by the following

Theorem 0.2. Let us consider the filtration by “columns” on BC∗∗∗, i.e. the filtration

whose p-th graded piece is the bicomplex BCp∗∗. If CC∗(DX∗) denotes the cyclic com-

plex of the sheaf of differential operators on X∗, then there is a quasi-isomorphism of

complexes (n = dim(X∗))

Tot(CC∗(DX∗)) −→ Tot(BCp∗∗)[2n].

The bicomplex BCp∗∗ is equipped with an operator N induced by that on the ψ∗∗(C).

The periodicity operator S on the complex CC∗(DX∗) corresponds to the monodromy

operator N on BCp∗∗, i.e. we have the following commutative diagram of exact se-
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quences with vertical isomorphisms; the maps S and N are identical

...→ H2n−k(Ker(N)∗)
I−−−→ H2n−k(Tot(BCp∗∗)) N−−−→ H2n−k+2(Tot(BCp∗∗))→ ...

∼=
x ∼=

x ∼=
x

... −→ HHk(DX∗)
I−−−→ HCk(DX∗)

S−−−→ HCk−2(DX∗) −→ ...
||

H−k(Ch
∗ (DX∗))

||
H−k(CC∗(DX∗))

||
H−k+2(CC∗(DX∗))

(0.0.3)

This construction shows also that the hypercohomology H(BC∗∗∗) is the abutment

of a spectral sequence whose E1-terms are cyclic homologies HC(DX∗). On each

“column” BCp∗∗ of BC∗∗∗, both N and S act by dropping a (de-Rham) cohomology

group of X∗, which is what is expressed in (0.0.3).

Connes periodicity operator in cyclic homology and monodromy at

archimedean infinity

In [2], S. Bloch, H. Gillet and C. Soulé consider an algebraic fibration f : X −→ C over

a curve C, such that the fiber f−1(P ) = Y ⊆ X over a closed point P ∈ C, is a divisor

with normal crossings. In this set-up, the authors define a cohomological complex

on X and show, under certain assumptions, the existence of formal analogues of the

Local Invariant Cycle Theorem and the Lefschetz Theorem(s). Motivated in part by

their construction, C. Consani defined in [18] a complex K∗∗∗ with monodromy-like

operator N : Ki,j,k −→ Ki+2,j,k+1 on a smooth, projective algebraic variety X over C

or R, with the goal to introduce a theory of nearby cycles at “archimedean infinity”.

The terms Ki,j,k are modules of real differential forms on X twisted by suitable powers

of (2πi). The cohomologies of the complex K∗∗∗ behave formally as the E1−terms of

the spectral sequence associated to the Picard-Lefschetz filtration on the Steenbrink’s

complex A∗∗.
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In this thesis, we introduce bicomplexes K∗∗t which are defined by suitably combin-

ing the terms Ki,j,k in which the same “twist” by (2πi)t appears. This construction

(of grouping terms with the same twist) is the analogue of the operation of looking

at a fixed “stratum” of Y in the construction of [2]. Then, we show in Proposi-

tion 4.8 that there are natural maps from the Hochschild cohomology of the ring of

differential operators on X to the cohomology of the graded pieces of the filtration

F lK∗∗t := Im(N l) (l ≥ 0) on the bicomplex K∗∗t . This filtration coincides with the

filtration by rows on K∗∗t . More precisely, we obtain the following

Theorem 0.3. For each fixed t ∈ Z, the filtration F l(Tot(K∗∗t )) = Im(N l) (l ≥ 0)

coincides with the filtration by rows on Tot(K∗∗t ). There are natural maps from the

Hochschild cohomology of the ring of differential operators on X to the homology of

the graded pieces of the filtration F , i.e. natural maps (n = dimX)

HHq+n(D(X)) −→ Hq−2t(GrlFTot(K
∗∗
t )).

The operator N acts on the complexes K∗∗t ; N : K∗∗t −→ K∗+1,∗+1
t−1 by shifting the

index t. Because of that, we consider (in analogy with the construction of the complex

BC∗∗∗ in the Steenbrink case) a triple complex K∗∗∗, which is again assembled in a

precise way as a “vertical stack” of all the bicomplexes K∗∗t (as t varies in Z). The map

N acts between two consecutive vertical levels. K∗∗∗ carries differentials d′, d′′ induced

by the ones on the K∗∗t ’s. By the q-th “row” of the triple complex K∗∗∗, we mean the

double complex K∗q∗. Following this technique, we are able to prove in Proposition

4.9 the existence of a natural map from the cyclic cohomology HC∗(D(X)) to the

cohomology of the graded pieces of the filtration by “rows” on K∗∗∗. The “rows”

K∗q∗ carry operators N induced by the complexes K∗∗t (that have been stacked to

form the triple complex K∗∗∗). The cyclic complex carries the periodicity operator
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S which, under the above natural map, corresponds to the operator N on the “row”

K∗q∗. More precisely, we prove the following statement, which is the archimedean

counterpart of Theorem 0.2:

Theorem 0.4. Let us consider the filtration by “rows” on K∗∗∗, i.e. the filtration

whose q-th graded piece is the bicomplex K∗q∗. There are natural maps connecting

the cyclic cohomology of the ring D(X) to the cohomology of the bicomplex K∗q∗

(n = dimX)

HCj+n(D(X))→ Hj(K∗q∗) ∀ j ≥ 0.

The bicomplex K∗q∗ is equipped with an operator N induced by that on the K∗∗t . The

map N corresponds to the periodicity operator S appearing in the cyclic cohomology

of D(X), i.e. we have the following commutative diagram

HCj+n−2(D(X))
S−−−→ HCj+n(D(X)) −−−→ HHj+n(D(X))y y y

Hj−2(K∗q∗) N−−−→ Hj(K∗q∗) −−−→ Hj(Coker(N)∗)

(0.0.4)

It is important to explicitly remark here that the vertical maps in the diagram

(0.0.4), unlike those in (0.0.3), are not in general isomorphisms. There are at least

two technical reasons to justify this weaker statement. First of all, the pairing be-

tween cyclic homology and cohomology is not in general a perfect pairing i.e. the nat-

ural map HC∗(D(X)) −→ Hom(HC∗(D(X)),C) is not in general an isomorphism.

Hence, the isomorphism (0.0.2) does not have a dual counterpart in cyclic cohomol-

ogy. The second reason is that in the archimedean case, unlike in the construction

over a disc, I work with complexes of modules (i.e. global sections of sheaves) rather

than with complexes of sheaves. The quasi isomorphism of complexes of sheaves that

lead to the vertical isomorphisms in the commutative diagram (0.0.3) is here replaced
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only by a natural map connecting complexes of global section of the corresponding

complexes of sheaves.

I conclude this overview of this part of my thesis by saying that in this archimedean

setup I also introduce two further bicomplexes ϕ∗∗ and B∗∗ which are linked by

a map µ : ϕ∗∗ → B∗∗. These complexes are also endowed with monodromy-type

operators N and they are the replacement for the nearby cycles complex ψ∗∗(C) and

the Steenbrink complex A∗∗ in this framework. In particular, I prove in Proposition

4.11 that the maps N ◦µ and µ◦N are again chain homotopic, in exact analogy with

the corresponding result in the theory developed by Steenbrink.

Connes-Karoubi long exact sequence in K-theory

We have already described how the monodromy operator on the nearby cycles

complex can be identified with the periodicity operator in cyclic homology. The

diagram (0.0.3) shows in particular that the theory of nearby cycles has a very close

connection with the cyclic theory of differential operators on X∗. A question that

naturally arises, also in view of my result is whether the periodicity exact sequence

in cyclic theory can be lifted to a long exact sequence involving a “motivic theory”

such as Chow groups or K-theory.

In [13], Connes and Karoubi exhibit a long exact sequence in K-theory that lifts

the long exact periodicity sequence (0.0.1).

Kalg
i+1(A) −−−→ Ktop

i+1(A) −−−→ Krel
i (A) −−−→ Kalg

i (A) −−−→ Ktop
i (A)yDi+1

ychi+1

ychreli yDi ychi
Hi+1(A,A) −−−→ HCi+1(A) −−−→ HCi−1(A) −−−→ Hi(A,A) −−−→ HCi(A)

(0.0.5)

In the above diagram, Kalg
i (A), Ktop

i (A) and Krel
i (A) denote resp. the algebraic,
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topological and relative K-theories of a locally convex algebra A. The vertical maps

Di is the Dennis trace. The topological and relative Chern maps chtopi and chreli have

been constructed in [13].

To link this construction with the geometric set-up of nearby cycles, we consider

once again the sheaf DX∗ of differential operators on X∗, where the variety X∗ is as in

the Steenbrink setup described earlier (although our results are valid for any locally

Stein manifold). For any open set U ⊆ X∗, we denote by D(U) the ring of differential

operators on U . Then, by definition one has

Kalg
i (D(U)) = πi(BGL(D(U))+) Ktop

i (D(U)) = πi(BGL(D(U))∗)

Krel
i (D(U)) = πi((GL(D(U)∗)/GL(D(U)))+),

where D(U)∗ denotes the simplicial ring C∞(∆∗)⊗̂D(U) and ∆∗ is the standard sim-

plex. Let BGL+ (resp. BGLtop and GLrel+) to be the simplicial sheaf obtained from

the presheaf that associates to an open set U ⊂ X∗ the simplicial set BGL(D(U))+

(resp. BGL(D(U)∗) and (GL(D(U)∗)/GL(D(U)))+). Using the definition of gen-

eralized cohomology for simplicial sheaves given by Brown and Gersten in [5], we

introduce the following groups

Kalg
i (D∗X) = H−i(X∗,BGL+) := πiΓ(X∗, R(BGL+))

Ktop
i (D∗X) = H−i(X∗,BGLtop) := πiΓ(X∗, R(BGLtop))

Kalg
i (D∗X) = H−i(X∗,GLrel+) := πiΓ(X∗, R(GLrel+))

(0.0.6)

where R(BGL+) refers to the flasque resolution of the simplicial sheaf BGL+ (and

similarly for R(BGLtop) and R(GLrel+)). The flasque resolution of a simplicial sheaf

F on X∗ is a simplicial sheaf R(F) endowed with a monomorphism F → R(F) which
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is a weak equivalence and a global fibration R(F) −→ ∗.

In the thesis, I show that there is a stalkwise fibration (aka “local fibration”) of

simplicial sheaves BGL+ → BGLtop which determines a long exact sequence

. . . −−−→ H−i(X∗,GLrel+) −−−→ H−i(X∗,BGL+) −−−→ H−i(X∗,BGLtop) −−−→

Therefore, using the definitions in (0.0.6), we obtain a long exact sequence connecting

the groups Kalg
i (DX∗), K

top
i (DX∗) and Krel

i (DX∗), in exact analogy with the upper

sequence in (0.0.5). Moreover, we show that the homotopy sheaves of R(BGL+)

and the sheaf associated to the presheaf X∗ ⊃ U → BGL+(D(U)) are identical. By

patching over the Stein open subsets of X∗ (which form a basis), we construct the

Dennis trace Di : Kalg
i (DX∗) −→ HHi(DX∗). Similarly, we am able to define Chern

maps chtopi and chreli and obtain a commutative diagram analogous to (0.0.5) for the

sheaf DX∗ . The full result is summarized by the following

Theorem 0.5. There exists a local fibration of simplicial sheaves BGL+ −→ BGLtop.

This determines a long exact sequence connecting algebraic, topological and relative

K-theories of the sheaf of differential operators on X∗ as well as connecting maps

Di : K alg
i (DX∗) −→ HHi(DX∗), chtopi : K top

i (DX∗) −→ HCi+1(DX∗) and chreli :

K rel
i (DX∗) −→ HCi−1(DX∗) which fit into the following commutative diagram

...→ Krel
i+1(DX∗) −−−→ Kalg

i+1(DX∗) −−−→ Ktop
i+1(DX∗)→ ...ychreli yDi ychtopi

...→ HCi(DX∗) −−−→ HHi+1(DX∗) −−−→ HCi+1(DX∗)→ ...

A similar result holds true also when X∗ gets replaced by an algebraizable Noethe-

rian formal scheme X. In the thesis, I also show that when X arises by completing

a Noetherian scheme X along an irreducible subscheme Y , the sheaves GLrel, BGL
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and BGLtop are flasque, i.e. they coincide with their own flasque resolution.

Modular Hecke Algebras, Rankin-Cohen brackets and an enriched

archimedean complex

For any congruence subgroup Γ ⊆ SL2(Z), Connes and Moscovici have defined in

[10] a modular Hecke algebra A(Γ) which is an enlargement of the classical algebra

H(Γ) of Hecke operators. The algebra A(Γ) inherits a natural action of the Hopf

algebra H1 of “codimension 1 foliations”. The algebra H1 was originally defined by

Connes and Moscovici in [12], in the context of Riemannian geometry, as a member

of a larger family Hn (n ≥ 1) of Hopf algebras. It is a remarkable fact that H1

acts naturally on the specially constructed algebra A(Γ) involving Hecke operators

and (elliptic) modular forms. This leads one to naturally introduce the concepts of

“Schwarzian derivation” and “Godbillon-Vey cocycle” in the context of modular forms

and Hecke operators. The Hopf algebra H1 captures the symmetries of the modular

Hecke algebra A(Γ). A(Γ) is, by definition, an algebra of functions on Γ\G+
2 (Q)

taking values in the algebra of modular forms, i.e. in the direct limit over all levels of

the abelian groups of elliptic modular forms of all weights. The modular forms of level

Γ are global sections of the tensor algebra T (L (Γ)) of a line bundle L (Γ) over the

modular curve X(Γ). This suggests that the operators in H1 should act on a similar

module of functions on Γ\G+
2 (Q) taking values in a suitably defined “archimedean

complex of the modular tower with coefficients in the tensor algebra lim
−→

T (L (Γ))”.

As a first step of our construction, we shall consider the direct limit Ki,j,k =

lim−→
N

Ki,j,k(X(N)) of the archimedean complexes Ki,j,k(X(N)) defined by Consani in

[18], where the complex algebraic variety is a compactified modular curve X(N) =

Γ(N)\H and the modules of differential forms are tensored with elliptic modular forms
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of corresponding level and suitable weights. Elements of Ki,j,k are (finite) sums made

by terms of the form f ⊗ ω, where f is an elliptic modular form and ω is a twisted

real differential on the modular curve X(N). Then, we define Bi,j,k(Γ) to be the set

of functions

F : Γ\G+
2 (Q) −→ Ki,j,k (0.0.7)

with finite support such that: if F (Γα) = f ⊗ω for some α ∈ G+
2 (Q), then F (Γαγ) =

f |γ ⊗ ω for any γ ∈ Γ. The differentials d′ and d′′ on the archimedean complex

Ki,j,k induce differentials d′ : Bi,j,k(Γ) −→ Bi+1,j+1,k+1(Γ) and d′′ : Bi,j,k(Γ) −→

Bi+1,j+1,k(Γ).

For technical reasons, we also introduce a slight variant AT (Γ) of Connes-Moscovici’s

modular Hecke algebra. We define AT (Γ) to be the set of functions

F : Γ\G+
2 (Q) −→M⊗R R[T+] (0.0.8)

with finite support, where T+ denotes the semigroup consisting of all non negative

powers of (2πi)−1. As before, we require that if F (Γα) = f ⊗ ε for any α ∈ G+
2 (Q),

then F (Γαγ) = f |γ ⊗ ε for any γ ∈ Γ. Then, AT (Γ) becomes an algebra under the

product

(F ∗G)(Γα) =
∑

β∈Γ\G+
2 (Q)

(F (Γβ) ·G(Γαβ−1)|β) F,G ∈ AT (Γ). (0.0.9)

We then show that Bi,j,k(Γ) is a bimodule over AT (Γ) and moreover that Bi,j,k(Γ)

carries a flat action of the Hopf algebra H1 of “codimension 1 foliations”. As a Hopf
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algebra, H1 is defined by generators X, Y and δ1 and commutators/coproducts

[Y,X] = X [X, δn] = δn+1 [Y, δn] = nδn [δk, δl] = 0

∆(X) = X ⊗ 1 + 1⊗X + δ1 ⊗ Y ∆(Y ) = 1⊗ Y + Y ⊗ 1 ∆(δ1) = δ1 ⊗ 1 + 1⊗ δ1.

(0.0.10)

H1 acts on both AT (Γ) and Bi,j,k(Γ). The action of H1 on Bi,j,k(Γ) is flat in the sense

that

h(F ∗G) =
∑

h(1)(F ) ∗ h(2)(G) h ∈ H1

if F ∈ AT (Γ), G ∈ Bi,j,k(Γ) and ∆(h) =
∑
h(1) ⊗ h(2).

The generator X of H1 acts as the Ramanujan derivation on modular forms, Y

as the grading operator and δ1 measures the difference X(f |α)|α−1 −X(f) for some

α ∈ G+
2 (Q) and an element f of the modular tower.

The definition of an action of H1 on the enriched archimedean complex Bi,j,k(Γ)

is motivated by a formal similarity shared by the operator X and the monodromy

operator N on the archimedean complex Ki,j,k and by the operator Y and the negative

Frobenius operator −Φ on Ki,j,k (see [16]). Note in particular that the relation

[−Φ, N ] = N is similar to the relation [Y,X] = X.

Thereafter, we also consider a “reduced product” on AT (Γ), defined as follows.

For F , G ∈ AT (Γ), we define

(F ∗r G)(α) =
∑

β∈Γ\SL2(Z)

(F (β) ·G(αβ−1)|β). (0.0.11)

Notice that in the above formula one sums over the cosets of Γ ⊂ SL2(Z) rather than

the cosets in G+
2 (Q) as in (0.0.9). We refer to ArT (Γ) as to the algebra AT (Γ) endowed

with the product ∗r. Notice that the operator δ1 ∈ H1 measures the difference
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X(f |α)|α−1−X(f), for α ∈ G+
2 (Q) and an element f of the modular tower. Because

X(f |α)|α−1 −X(f) = 0 when α ∈ SL2(Z), summing over the cosets of Γ in SL2(Z)

as in (0.0.11) allows one to define a “reduced” bimodule action of a smaller Hopf

algebra h1 on Bi,j,k(Γ). The Hopf algebra h1 is obtained from H1 by setting all δn = 0

in (0.0.10). When we think of Bi,j,k as a bimodule over h1, we denote it by Bi,j,k
r (Γ).

We then show that h1 has a flat action on Bi,j,k
r (Γ) which is a bimodule over ArT (Γ).

These results described in this section can be summarized as follows

Theorem 0.6. For any congruence subgroup Γ ⊆ SL2(Z), the algebra B∗(Γ) as in

(0.0.7) is a bimodule over the algebra AT (Γ). Moreover, the Hopf algebra H1 has a

flat action on the system (AT (Γ),B∗(Γ)), i.e. for any F ∈ AT (Γ), G ∈ B∗(Γ) and

any given h ∈ H, one has

h(F ∗G) =
∑

h(1)(F ) ∗ h(2)(G) ∆(h) =
∑

h(1) ⊗ h(2).

Then B∗r(Γ) is a bimodule over the “reduced” algebra ArT (Γ) as in (0.0.11), with the

action defined by considering cosets of Γ in SL2(Z), rather than in G+
2 (Q). The Hopf

algebra h1 (δn = 0, ∀n > 1) has a flat action on the system (ArT (Γ),B∗r(Γ)), i.e. for

any F ∈ ArT (Γ) and G ∈ B∗r(Γ) and any given h ∈ h1, one has

h(F ∗G) =
∑

h(1)(F ) ∗ h(2)(G) ∆(h) =
∑

h(1) ⊗ h(2).

In the final part of the thesis we introduce the definition of Rankin Cohen brackets

on Bi,j,k
r (Γ) and Bi,j,k(Γ). For this construction I use the work of Connes and Moscovici

[9] and the definition of a pairing defined on the archimedean complex Ki,j,k in [18].
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1 Background on Cyclic Homology and Cyclic Co-

homology

—————————————————————————————————————

Cyclic cohomology was introduced by Connes (cf [14]) and B. Tsygan as an ana-

logue for de Rham cohomology in the case of a noncommutative algebra.

1.1 Basic Definitions

Given an algebra A over a commutative ring k, we define its Hochschild homology

HHq(A) to be the q-th homology of the complex

Ch
∗ : . . .

b−−−→ A⊗k A⊗k A
b−−−→ A⊗k A

b−−−→ A −−−→ 0 (1.1.1)

We shall denote the (n+ 1)-the tensor power of A over k by A⊗n+1. In the sequence

(1.1.1), the differential b : A⊗n+1 → A⊗n is defined as follows:

b(a0 ⊗ a1 ⊗ ...⊗ an) =
n−1∑
i=0

a0 ⊗ ...⊗ aiai+1 ⊗ ...⊗ an

+(−1)nana0 ⊗ ...⊗ an−1

(1.1.2)
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The differential b in (1.1.2) may be described as the alternating sum b =
∑n

i=0(−1)idi

of the maps di : A⊗n+1 → A⊗n which are defined as follows

d0(a0 ⊗ a1 ⊗ ...⊗ an) = a0a1 ⊗ ...⊗ an

di(a0 ⊗ a1 ⊗ ...⊗ an) = a0 ⊗ ...⊗ aiai+1 ⊗ ...⊗ an 1 ≤ i ≤ n− 1

dn(a0 ⊗ a1 ⊗ ...⊗ an) = ana0 ⊗ a1 ⊗ ...⊗ an−1

(1.1.3)

The maps di are usually referred to as the face maps. We also set b′ =
∑n−1

i=0 (−1)idi

and note that, by construction, b′2 = 0 as well. One also introduces another set of

maps si : A⊗n → A⊗n+1, 0 ≤ i ≤ n, which are referred to as degeneracy operators

and they are defined as follows:

s0(a0 ⊗ a1 ⊗ ...⊗ an−1) = a0 ⊗ 1⊗ a1 ⊗ ...⊗ an−1

si(a0 ⊗ a1 ⊗ ...⊗ an−1) = a0 ⊗ ...⊗ ai−1 ⊗ 1⊗ ai ⊗ ...⊗ an−1

(1 ≤ i ≤ n− 2)

sn−1(a0 ⊗ a1 ⊗ ...⊗ an−1) = a0 ⊗ ...⊗ an−1 ⊗ 1

sn(a0 ⊗ a1 ⊗ ...⊗ an−1) = 1⊗ a0 ⊗ ...⊗ an−1

(1.1.4)

The map sn : A⊗n → A⊗n+1 is called the extra degeneracy. In order to define the

cyclic bicomplex, we first introduce the cyclic operator defined as

tn : A⊗n+1 → A⊗n+1 tn(a0 ⊗ a1 ⊗ ...⊗ an) = (−1)n(an ⊗ a0 ⊗ ...⊗ an−1) (1.1.5)

as well as

N : A⊗n+1 → A⊗n+1 N = 1 + tn + t2n + ...+ tnn (1.1.6)

We notice that the cyclic group Z/(n+1)Z acts on A⊗n+1 through its generator t = tn.

From the definition of tn in (1.1.5), it follows that tn+1
n = 1. In what follows, we will
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often omit the subscript and refer simply to the cyclic operator t when there is no

danger of confusion. Sometimes, we will also denote the element a0⊗a1⊗...⊗an of the

tensor product A⊗n simply by (a0, ..., an). One can easily check that (1−t)b′ = b(1−t)

and that b′N = Nb.

b

y −b′
y b

y −b′
y

A⊗3 1−t←−−− A⊗3 N←−−− A⊗3 1−t←−−− A⊗3 ←−−−
N

. . .

b

y −b′
y b

y −b′
y

A⊗2 1−t←−−− A⊗2 N←−−− A⊗2 1−t←−−− A⊗2 ←−−−
N

. . .

b

y −b′
y b

y −b′
y

A
1−t←−−− A

N←−−− A
1−t←−−− A ←−−−

N
. . .

(1.1.7)

Definition 1.1. (see [31, 2.1.3]) Define the bicomplex CC(A) of (1.1.7) formally as

follows: Set

CC(A)p,q = A⊗q+1 p, q ≥ 0 (1.1.8)

together with maps (for k, l ∈ Z≥0)

CC(A)2k,q+1
b−−−→ CC(A)2k,q CC(A)2k+1,q+1

−b′−−−→ CC(A)2k+1,q

CC(A)2k+1,q
1−t−−−→ CC(A)2k,q CC(A)2k+2,2l+1

N−−−→ CC(A)2k+1,q

(1.1.9)

We define the cyclic homology HCq(A) to be the q-th total homology of the bicomplex

CC(A).

HCq(A) = Hq(Tot CC(A)) (1.1.10)

We begin by noting that the b′-columns in the bicomplex above are acyclic. If s

20



denotes the extra degeneracy as defined before, it is easy to verify that

b′s+ sb′ = id. (1.1.11)

and hence the identity map on the b′-complex is chain homotopic to 0. Hence, the b′

complex is contractible.

We define the Connes boundary operator B as follows:

B : A⊗n → A⊗n+1 B = (1− t)sN (1.1.12)

where s is, once again, the extra degeneracy as defined above, t denotes the cyclic

operator tn, and N is, as in (1.1.6), defined to be the sum N = 1+tn−1+t2n−1+...+tn−1
n−1.

From now onwards, we will assume that A is a unital k-algebra. We define the

mixed complex B∗∗(A)

Bp,q(A) = A⊗q+1−p q, p ≥ 0 (1.1.13)

with the two differentials

B : Bp+1,q(A)→ Bp,q(A) b : Bp,q+1(A)→ Bp,q(A)

More explicitly, we have

B : A⊗ A⊗n −→ A⊗ A⊗n+1 (1.1.14)

B(a0, a1, ..., an) =
n∑

i=10

(−1)ni(1, an−i+1, ..., an, a0, ..., an−i) (1.1.15)

+
n∑
i=0

(−1)n(i+1)(an−i, 1, an−i+1, ..., an, a0, ..., an−i−1)
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The following proposition will show that the cyclic homology HCq(A) of a unital

k-algebra A can also be calculated from the mixed complex B∗∗(A).

Proposition 1.2. (1) For any associative and unital k-algebra A, the cyclic homology

HCq(A) can be described as the q-th total homology of the complex B∗∗, i.e.

Hq(Tot B(A)) ∼= HCq(A) (1.1.16)

(2) Let A be a unital k-algebra and let Ā = A/k. If we replace each term A⊗n+1 in

B∗∗(A) by A ⊗ Ā⊗n, we obtain a normalized bicomplex B(A)p,q = A ⊗ Āq−p endowed

with differentials B̄ and b̄. Then, there exists a canonical isomorphism

Hq(Tot B(A)) ∼= HCq(A) (1.1.17)

Proof. See [31, 2.1.7-11].

From the structure of the bicomplex B(A) it is clear that we have a short exact

sequence

0 −→ Ch
∗ (A) −→ Tot(B(A))

α−→ Tot(B(A)[−1,−1]) −→ 0 (1.1.18)

The associated long exact sequence of homologies gives rise to the following:

Proposition 1.3. (Periodicity Sequence) For any associative and unital k-algebra

A, the homology long exact sequence associated to (1.1.18) determines a long exact

sequence

. . . −−−→ HHn(A)
I−−−→ HCn(A)

S−−−→ HCn−2(A)
B−−−→ HHn−1(A) −−−→ . . .

(1.1.19)
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The operator S appearing in (1.1.19) induced in homology by the map α in (1.1.18)

is referred to as the Connes periodicity operator.

The formalism of degeneracies and face maps which we have described above may

be conveniently summarized in terms of a simplicial category ∆. The objects of the

small category ∆ are sets [n], for each n ≥ 1. The morphisms of in ∆ are of two

kinds; face maps δi : [n − 1] → [n], 0 ≤ i ≤ n and degeneracies σj : [n + 1] → [n],

0 ≤ j ≤ n for each n ≥ 1. The relations between the face maps and the degeneracies

are as follows:

δjδi = δiδj−1

σjσi = σiσj+1

σjδi =


δiσj−1 for i < j

id[n] for i = j, i = j + 1

δi−1σj for i > j + 1

(1.1.20)

The simplicial category ∆ is, therefore, isomorphic to a category whose objects

are sets [n] = {0, 1, 2, ..., n} and whose morphisms from [m] to [n] are non decreasing

maps from {0, 1, 2, ...,m} to {0, 1, 2, ..., n}.

Then a simplicial object (resp. cosimplicial object) in a category C is a contravari-

ant (resp. covariant) functor F : ∆ → C . When the functor F is contravariant, the

images of the maps δi and σj are denoted by di and sj respectively. If F is a simplicial

object in an abelian category C , we can form a complex F k
h = F ([−k]), k ≤ 0, with

the differential b =
∑k

i=0(−1)idi : F ([k])→ F ([k − 1]).

The Hochschild homology of the k-algebra A, is therefore obtained as the homology

of this complex when we define F ([n]) = A⊗n+1 taking values in the categories of k-

modules.
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The category ∆ is subsumed in the larger cyclic category ∆C, which has the same

objects as ∆, and which, in addition has a cyclic operator τn : [n]→ [n] that satisfies

the following relations:

τnδi = δi−1τn−1 for 1 ≤ i ≤ n and τnδ0 = δn τn+1
n = id

τnσi = σi−1τn+1 for 1 ≤ i ≤ n and τnσ0 = σnτ
2
n+1

(1.1.21)

A cyclic (resp. cocylic) object in a category C is a contravariant (resp. covariant)

functor F : ∆C → C . If F is contravariant, the image of the morphism τn is denoted

by tn. When C is an abelian category, we can form the corresponding cyclic bicomplex

(1.1.7) . The cyclic homology of a k-algebra A is, then the total homology of this

bicomplex when we define the (contravariant) functor F ([n]) = A⊗n+1 taking values

in the (abelian)category of k-modules.

Definition 1.4. (see [31, 2.4.1]) Let A be an associative and unital k-algebra. We

denote the by C0(A) the algebraic dual Hom(A, k) of A. In general, we set Cn(A) =

Hom(A⊗n+1, k). We refer to Cn(A) as the space of n-cochains on A.

By working with the space of cochains on A, we can dualize the bicomplex CC∗∗(A)

to get the bicomplex CC∗∗(A). The bicomplex CC∗∗(A) has vertical differentials b∗

and b′∗ : CCp,q(A) → CCp,q+1(A) and horizontal differentials (1 − t)∗ and N∗ :

CCp,q(A)→ CCp,q+1(A), which are the duals of the differentials in (1.1.9).

The cyclic cohomology of A is the homology of the cochain complex Tot(CC∗∗(A)),

i.e.

HCn(A) := Hn(Tot(CC∗∗(A))) (1.1.22)
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We say that a cochain f ∈ Cn(A) is cyclic if it satisfies the relation

f(a0, a1, ..., an) = (−1)nf(an, a0, ..., an−1) ai ∈ A. (1.1.23)

Let us denote the space of cyclic cochains by Cn
λ . It may be checked that the image of

a cyclic cochain under the operator b∗ is still a cyclic cochain. Therefore, (Cn
λ (A), b∗)

is a subcomplex of (C∗(A), b∗) and we denote its homology of H∗λ(A).

If k contains Q, it is known (see [31, § 2.4]) the inclusion map C∗λ(A) ↪→ C∗(A)

induces an isomorphism

Hn
λ (A)

∼−→ HCn(A) n ≥ 0

This construction, due to Connes [14], gives an alternative definition of cyclic coho-

mology. As in the homological framework, we have a periodicity sequence

Proposition 1.5. [31, S2.4.4] An associative k-algebra gives rise to a long exact

sequence

. . . −−−→ HHn(A)
B−−−→ HCn−1(A)

S−−−→ HCn+1(A)
I−−−→ HHn+1(A)

B−−−→ . . .

(1.1.24)

Following [31, 1.5.9, 2.4.8], we describe the pairing between cyclic cohomology and

cyclic homology of a k-algebra A

< ., . >: HCn(A)×HCn(A)→ k (1.1.25)

We denote by Ae = A ⊗k Aop, the enveloping algebra of A and note that Cn(A) =

Hom(A⊗n+1, k) = Hom(A⊗n, A∗), where A∗ = Hom(A, k). The complex (Cn(A), b∗)
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may therefore be replaced by an isomorphic complex (Hom(A⊗n, A∗), β) which we

denote by (Cn(A,A∗), β). We now obtain a pairing

Cn(A,A∗)× Cn(A) −→ A∗ ⊗Ae A (1.1.26)

by setting

(f, (a0, a1, ..., an)) 7→ f(a1, ..., an)⊗ a0

One can easily check that

< β(f), x >=< f, b(x) > f ∈ Cn(A,A∗), x ∈ Cn+1(A) (1.1.27)

This induces a pairing on the homologies (called Kronecker product)

< ., . >: HHn(A)×HHn(A) −→ A∗ ⊗Ae A (1.1.28)

This pairing further extends to cyclic homology (see [31, §2.4.8.2]) and cohomology

HCn(A)×HCn(A) −→ A∗ ⊗Ae A (1.1.29)

When we compose this latter pairing (1.1.29) with the evaluation map ev : A∗⊗AeA→

k, ev(f ⊗ a) = f(a), we get a pairing

HCn(A)×HCn(A) −→ k (1.1.30)

We mention here that this pairing is not usually perfect, but it is non degenerate in

certain cases, for instance, if A = k or if k is a field and A is a k-algebra that is finite

dimensional as a k-vector space (see [31, §2.4.8]).
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1.2 The case of a topological algebra

The definitions of Hochschild and cyclic homology which we have reviewed in the

previous section may be extended to a topological algebra over a field k. We shall

be particularly interested in the case of the ring of holomorphic (resp. smooth)

differential operators over a Stein (resp. compact) manifold. In this regard, we will

need to recall some definitions.

If V is a complex vector space, then a seminorm p on V is a map p : V → R such

that

(1) p is nonnegative, i.e. p(x) ≥ 0 for all x ∈ V .

(2) p is linear in the sense that p(λx) = |λ|p(x) for λ ∈ C. (This implies, in particular,

that p(0) = 0).

(3) p is subadditive, i.e. p(x+ y) ≤ p(x) + p(y).

A locally convex vector space V is a vector space with a family {pα}α∈I of semi-

norms defined on it. We make V into a topological space by assigning to it the

coarsest topology such that each of the seminorms pα is continuous. If the family I

of seminorms defining the topology on V is countable, we say that V is a Fréchet

space.

Definition 1.6. A locally convex algebra A over R or C has a family of seminorms

{pα}α∈I defining the structure of a locally convex vector space on it. Additionally,

each seminorm is assumed to be submultiplicative, i.e.

pα(fg) ≤ pα(f)pα(g), f, g ∈ A (1.2.1)

Finally, we shall need the notion of topological tensor product. If V and W are
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two topological vector spaces, with norms |.|V and |.|W defined on them, a cross norm

p defined on their algebraic tensor product V ⊗W is a norm satisfying the following

two conditions:

(a) p(x⊗ y) = |x|V |y|W for all x ∈ V and y ∈ W .

(b) p∗(S ⊗ T ) = |S|V |T |W for all linear operators S ∈ V ∗ and T ∈ W ∗, where p∗ is

the norm on the dual (V ⊗W )∗ by p.

It follows that there is a smallest cross norm on V ⊗W , called the injective cross

norm λ, defined to be, for x ∈ V ⊗W ,

λ(x) = sup{(S ⊗ T )(x)|S ∈ V ∗, T ∈ W ∗, |S|V ≤ 1, |T |W ≤ 1}. (1.2.2)

There is also a largest cross norm, called the projective cross norm Λ, defined to be,

for x ∈ V ⊗W ,

Λ(x) = inf{
∑
|ai|V |bi|W | over all finite decompositions x =

∑
aibi}.

We also have a notion of algebraic tensor product in either norm, which we denote

by V ⊗λW and V ⊗Λ W respectively.

If the spaces V and W are locally convex, we have a family of seminorms on either

of V and W . In that case, we can form an injective cross seminorm and a projective

cross seminorm for each pair of seminorms on V and W . We take either all of the

injective cross seminorms to define a completion V ⊗εW or all of the projective cross

seminorms to define a completion V ⊗πW . We also have a map V ⊗πW → V ⊗εW .

When the map V ⊗π V −→ V ⊗ε V is an isomorphism, we say that V is a nuclear

space.
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Definition 1.7. A Fréchet space is a locally convex vector space such that its topology

is induced by a countable family {pi}i∈N of seminorms and the space is complete.

An algebra A is said to be a Fréchet algebra if it is a Fréchet space as defined above

and each of the seminorms is submultiplicative, i.e.

pi(fg) ≤ pi(f)pi(g), ∀ f, g ∈ A (1.2.3)

By replacing the ordinary tensor product ⊗k by ⊗π, we can define a Hochschild

complex Ch
∗ (Atop) and a cyclic complex Tot(CC(Atop)). We denote their respective

homologies by HH∗(A
top) and HC∗(A

top) respectively. There is a morphism of com-

plexes Ch(A)→ Ch(Atop) and Tot(CC(A))→ Tot(CC(Atop)), which induces natural

morphisms

HH∗(A) −→ HH∗(A
top) HC∗(A) −→ HC∗(A

top) (1.2.4)

We also have a long exact periodicity sequence in the topological context and the

morphisms of (1.2.4) induce a morphism of long exact sequences:

...→ HHn(A)
I−−−→ HCn(A)

S−−−→ HCn−2(A)
B−−−→ HHn−1(A)→ ...y y y y

...→ HHn(Atop)
I−−−→ HCn(Atop)

S−−−→ HCn−2(Atop)
B−−−→ HHn−1(Atop)→ ...

(1.2.5)

1.3 The case of filtered algebras

We will now describe the cyclic homology of filtered algebras. First of all, recall that

the ring of differential operators D(X) on a manifold X has a natural filtration by

order of operator (see Appendix 1 to Chapter 3). Along with the cyclic homology of
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a topological algebra explained above, this allows us to present the description of the

Hochschild and cyclic homology of D(X) due to Wodzicki (cf [46]). In this respect,

our principal reference is the paper [3] of Block.

Let A be an algebra over k equipped with an increasing filtration

0 = F−1A ⊂ F0A ⊂ F1A ⊂ F2A ⊂ . . . (1.3.1)

that is exhaustive, i.e. A = ∪FpA and satisfies FpA · FqA ⊂ Fp+qA. Form the cyclic

vector space C∗(A) that computes the cyclic homology of A. Then Cn(A) = A⊗n+1

is equipped with an increasing filtration which is defined as

FpCn(A) =
∑

k0+k1+...+kn=p

Fk0A⊗ ...⊗ FknA (1.3.2)

Since the differentials in the cyclic bicomplex preserve the filtration, for each p,

FpCn(A) is a cyclic vector space.

Definition 1.8. (cf [3, 3.1]) Let A be an algebra over k. We let d(A) = inf{n ∈

N| HHi(A) = 0 for i > n}. Then we refer to d(A) as the Hochschild dimension of A.

Block (see [3]) proves the following results:

Proposition 1.9. Let A be an algebra over k endowed with an increasing filtration

FkA as in (1.3.1). Then

(1) d(A) ≤ d(gr(A)).

(2) There is an isomorphism of associated graded cyclic vector spaces

gr(F∗C∗A) ∼= C∗gr(A)
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(3) For l ≥ 1, the operator S in cyclic homology induces a corresponding map

S : HCi+2(FlC∗A/Fl−1C∗A) −→ HCi(FlC∗A/Fl−1C∗A)

(4) If d(gr(A)) = n <∞, then the natural map

HCi(F0A) −→ HCi(A)

is an ismorphism for i ≥ n.

Proof. See [3, Theorem 3.4]

The above result of Block is the analogue in cyclic homology of the following well

known result of Quillen (cf. [34]) in K-theory.

Proposition 1.10. (Quillen) Let A be a ring endowed with an increasing filtration

FpA, p ≥ 0 and such that F0A is regular. Suppose that B = gr(A) has finite Tor

dimension as a right F0A-module and that F0A has finite Tor dimension as a right

B-module. Then, the inclusion F0A ↪→ A induces an isomorphism in K-theory;

Ki(F0A) ∼= Ki(A). (1.3.3)

Remark 1.11. The constructions described above are in the context of the algebraic

tensor product ⊗. It is clear that these results can be suitably reproduced when A is

a topological algebra endowed with a filtration.
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1.4 Relations with de Rham Cohomology

At the beginning of the chapter we have mentioned that cyclic homology is a noncom-

mutative analogue of de Rham cohomology. In this section, we explain the connection.

We define Ω1
A|k to be the module of 1-differential forms of A over k. Let Derk(A,M)

denotes the k-module of k-linear derivations on A with values in an A-module M , i.e.

the module of k-linear maps D : A→M such that

D(ab) = D(a)b+ aD(b) ∀ a, b ∈ A. (1.4.1)

Then it is well known that the functor Derk(A, ) from A-modules to k-modules is

represented by Ω1
A|k, i.e.

Derk(A,M) = Homk(Ω
1
A|k, A) (1.4.2)

Explicitly, Ω1
A|k is the module generated by all terms of the form adb, for a, b ∈ A

subject to the relations d(ab) = d(a)b+ad(b), a, b ∈ A and we will denote this module

simply by Ω1
A. We set

Ωi
A = ∧iAΩ1

A i ≥ 0 (1.4.3)

and define the following map

πn : Cn(A) −→ Ωn
A (a0 ⊗ a1 ⊗ ...⊗ an) 7→ a0da1...dan (1.4.4)

One may easily check that πn ◦ b = 0, b being the Hochschild differential, and as such,

there is a canonical map

πn : HHn(A) −→ Ωn
A (1.4.5)
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We denote by Sn the symmetric group acting by permutations on the set {1, 2, ..., n}.

Then σ ∈ Sn acts on Cn(A) on the left as follows:

σ · (a0 ⊗ a1 ⊗ ...⊗ an) = (a0 ⊗ aσ−1(1) ⊗ ...⊗ aσ−1(n)) (1.4.6)

We can therefore define the so called anti-symmetrization map

εn : A⊗∧nA −→ Cn(A) εn(a0⊗ a1 ∧ ...∧ an) =
∑
σ∈Sn

sgn(σ)σ · (a0⊗ a1⊗ ...⊗ an)

(1.4.7)

Proposition 1.12. For any commutative k-algebra A, the anti-symmetrization map

induces a canonical map

εn : Ωn
A −→ HHn(A) (1.4.8)

Proof. See [31, 1.3.12].

Proposition 1.13. The composition πn ◦ εn coincides with the multiplication by n!.

Consequently, if k contains Q, then Ωn
A is a direct summand of HHn(A).

Proof. See [31, 1.3.16].

The most important application of the above proposition is when A is a smooth

algebra. Let k be a Noetherian ring and A a commutative algebra over k which is

essentially of finite type. Suppose that Tornk (A,A) = 0 for all n > 0. Then A is said

to be smooth over k if A satisfies the following criterion:

For any pair (C, I) where C is a k-algebra and I an ideal in C with I2 = 0, the

natural map Homk(A,C)→ Homk(A,C/I) is a surjection

In particular, the symmetric algebra S(V ) = ⊕n≥0V
⊗n associated to a k-module

V is an example of a smooth algebra over k. It follows that polynomial algebras
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k[x1, ..., xm], m ≥ 1, are examples of smooth algebras. In the context of smooth

algebras, the following well known result applies.

Theorem 1.14. (Hochschild-Kostant-Rosenberg) Let A be a smooth algebra over k.

Then the anti-symmetrization map

εn : Ωn
A
∼−→ HHn(A) (1.4.9)

is an isomorphism for each n ≥ 0.

Proof. See [31, 3.4.9].

In fact, HHn(A) carries the structure of a graded algebra (with a shuffle product,

see [31]) and the isomorphism (1.4.9) is an isomorphism of graded algebras.

Now suppose that A is commutative and unital. The exterior derivative d : Ωn
A →

Ωn+1
A , n ≥ 0, is defined by setting d(a0da1da2...dan) = da0da1...dan and the homology

groups of the complex

0
d−−−→ Ω0

A
d−−−→ Ω1

A
d−−−→ Ω2

A
d−−−→ ... (1.4.10)

are said to be the de Rham cohomology groups Hn
dR(A) of A. Then, it may be verified

that the following two squares commute.

HHn(A)
B∗−−−→ HHn+1(A) Ωn

A
d−−−→ Ωn+1

A

πn

y πn+1

y εn

y εn+1

y
Ωn
A

(n+1)d−−−−→ Ωn+1
A HHn(A)

B∗−−−→ HHn+1(A)

(1.4.11)
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Proposition 1.15. When the ground ring k contains Q and A is a unital and com-

mutative k-algebra, the projection map π induces a canonical morphism

HCn(A)→ Ωn
A/dΩn−1

A ⊕Hn−2
dR (A)⊕Hn−4

dR (A)⊕ . . . (1.4.12)

The anti-symmetrization map ε∗ induces a map between the bicomplexes

ε∗ : (Ω∗A, 0, d) −→ (B(A), b, B) (1.4.13)

When A is a smooth algebra, the morphism ε∗ induces an isomorphism on the ho-

mologies of the columns of the two complexes. Hence, using the spectral sequences

of a double complex, one deduces that

Ωn
A/dΩn−1

A ⊕Hn−2
dR (A)⊕Hn−4

dR (A)⊕ . . . ∼= HCn(A) (1.4.14)

As a matter of fact, if the ground ring k contains Q the groups HCn(A) can be

decomposed into summands, each of which admits a canonical map onto one of the

groups Hn−2i
dR (A) (or to Ωn

A/dΩn−1
A ). More precisely, if A is a unital commutative ring,

the modules Cn(A), n ≥ 0 may be decomposed into direct sums

C0(A) = C
(0)
0 (A) Cn(A) = C(1)

n (A)⊕ ...⊕ C(n)
n (A) n ≥ 1 (1.4.15)

by means of Eulerian idempotents (see [31, §4.5-4.6]). The differentials b and B com-

mute with the direct sum decomposition and hence the Hochschild complex (C∗(A), b)

(resp. the mixed complex (B(A), b, B)) decomposes as a direct sum ⊕(C
(i)
∗ (A), b)

(resp. ⊕(B(i)(A), b, B)). We then obtain a splitting of the corresponding homology
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groups

HH0(A) = HH
(0)
0 (A) HHn(A) = HH(1)

n (A)⊕ ...⊕HH(n)
n (A) when n ≥ 1

(1.4.16)

HC0(A) = HC
(0)
0 (A) HCn(A) = HC(1)

n (A)⊕...⊕HC(n)
n (A) when n ≥ 1 (1.4.17)

which is known as the λ-decomposition. The λ-decomposition is sometimes referred

to as the Hodge filtration on Hochschild/Cyclic homology (see for instance, [41]).

When k contains Q, Ωn
A, n ≥ 0, is a direct summand of HHn(A) for each A. The

summand Ωn
A is actually isomorphic to HH

(n)
n (A) via the anti-symmetrization map

εn. This means that when A is a smooth algebra, εn : Ωn
A → HHn(A) being an

isomorphism, HH
(i)
n (A) = 0 for each i < n.

Theorem 1.16. When A is a smooth algebra over a ring k and k contains Q, the

λ-decomposition coincides with the decomposition in de Rham cohomology, i.e.

HC
(n)
n (A) = Ωn

A/dΩn−1
A

HC
(i)
n (A) = H2i−n

dR (A) for [n/2] ≤ i ≤ n

HC
(i)
n (A) = 0 for i < [n/2]

(1.4.18)

Finally, we recall for future use (see [14]) that the pairing between cyclic homology

and cyclic homology may also be understood in terms of differential forms. Define

an abstract cycle of degree n to be a triple (Ω, d,
∫

) where Ω = Ω0 ⊕ Ω1 ⊕ ...⊕ Ωn is

a graded algebra over k with a differential of degree +1 and
∫

: Ωn → k is a closed
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graded trace. In other words, the triple (Ω, d,
∫

) satisfies the following conditions:

(1) d(ωω′) = (dω)ω′ + (−1)ωω(dω′)

(2) d2 = 0

(3)
∫
ω2ω1 = (−1)|ω1||ω2|

∫
ω1ω2

(4)
∫
dω = 0 for ω ∈ Ωn−1

(1.4.19)

Given a k-algebra A, we define a cycle over A to be a triple (Ω, d,
∫

) as above

along with a morphism ρ : A→ Ω0. The cycle is said to be reduced if

(1) The algebra Ω is generated by ρ(A) as a differential graded algebra.

(2) The pairing (ω, ω′) 7→
∫
ωω′ is nondegenerate, i.e. if ω ∈ Ω is such that

∫
ωω′ = 0

for all ω′ ∈ Ω, then ω = 0.

Given any reduced n-cycle over A, we can define its character τ : A⊗n+1 → k as

τ(a0 ⊗ a1 ⊗ ...⊗ an) =

∫
a0da1...dan (1.4.20)

Connes [14] has shown that the character τ thus defined is always an n-cyclic cocycle

and that, conversely, any n-cyclic cocycle over A must necessarily be of this form.

This implies that, while cyclic homology is the noncommutative analogue of de Rham

cohomology, the cyclic cohomology is a noncommutative analogue of the cohomology

of the complex of de Rham currents.

For a general noncommutative algebra A, the reduced Hochschild complex C̄n(A)

itself acts as a substitute for the module of 1-forms over A. Connes and Karoubi

have defined the notion of noncommutative de Rham homology which is also directly

connected to cyclic homology. We refer to Karoubi [30] for details.
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2 Introduction to Steenbrink’s complex and

Consani’s complex

—————————————————————————————————————

Let X be a complex manifold. We shall denote by f : X → D a map from X

to the unit disc D such that the fibres f−1(t) are smooth for all t 6= 0, while the

fibre f−1(0) is a divisor Y with normal crossings on X (see §2.1 for the definition

of a divisor with normal crossings). We denote the complement X − Y by X∗. If

D̃∗ is a universal covering of D∗ = D − {0}, we denote the fibre product X ×D D̃∗

by X̃∗ (X̃∗ is usually referred to as the nearby fibre or the universal fibre). Under

these assumptions, Steenbrink [37] has constructed a complex that calculates the (de

Rham) cohomology of the fibre X̃∗. Steenbrink has shown that the cohomology of

X̃∗ carries a “limiting mixed hodge structure”.

A similar formalism has been introduced to describe the following situation: Let

K be a number field and let OK denote the ring of integers of K. Let X be an

arithmetic variety, i.e. a reduced and irreducible scheme over Spec(OK). Then, each

of the prime ideals p of the ring of integers OK induces a valuation on K with the

corresponding valuation ring being the localization OK,p. The fibre Xp of X over each

of these primes p is a variety over Spec(k(p)), k(p) being the residue field of p. Since

each of these valuations is nonarchimedean, we refer to the primes p as the finite

primes of OK .

We add to this collection of nonarchimedean valuations the archimedean valuations

of OK , given by real embeddings or pairs of conjugate complex embeddings of K and
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we refer to these archimedean valuations as the infinite primes (In general, we may

refer to an equivalence class of valuations as a “prime”). As for the nonarchimedean

fibres, we would like to describe the fibres of X over these infinite primes, i.e. the

vertical divisors of X at infinity. The complex points X(C) of X define a manifold,

and Consani [18] has shown that the Deligne cohomology of X(C) can be described

by a complex that is analogous to Steenbrink’s complex.

In this chapter, we will describe both of these complexes and discuss their main

properties.

2.1 The Logarithmic de Rham complex

Let X be a complex manifold of dimension n endowed with a morphism f : X → D

to the unit disc D such that the fibres f−1(t) are smooth for all t 6= 0, while the

fibre f−1(0) is a divisor Y with normal crossings on X. The fibre Y can therefore be

written as a union of smooth irreducible divisors Y = Y1∪Y2∪ ...∪YN , where, for each

1 ≤ k ≤ N , Yk is a nonsingular subvariety of codimension 1 in X. We denote by Y (p)

the union inside X of all the intersections Yi1∩...∩Yip , where 1 ≤ i1 < ... < ip ≤ N and

we let Ỹ (p) denote their disjoint union. Moreover, we shall denote by ap : Ỹ (p) → X

the canonical map. Note that Ỹ (p) is smooth and equidimensional.

If dim(X) = n and (z1, z2, ..., zn) is a system of local coordinates on X, we may

assume that Y is defined locally on X by the equation ze11 z
e2
2 ...z

el
l = 0, (l ≤ N), with

the equation {zi = 0} corresponding to the component Yi, for 1 ≤ i ≤ N .

We define the sheaf Ω1
X(log Y ) of 1-differentials on X with logarithmic poles along

Y to be the free OX-module generated locally by the sections

dz1

z1

,
dz2

z2

, ...,
dzl
zl
, dzl+1, ..., dzn
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We denote the exterior powers ∧pΩX(log Y ) by Ωp
X(log Y ). The de Rham differential

extends to the modules Ωp
X(log Y ), p ≥ 0 with Ω0

X(log Y ) = OX and the definition of

the de Rham complex Ω∗X(log Y ) with logarithmic poles along Y follows.

The weight filtration W on Ω∗X(log Y ) is defined by

WkΩ
p
x(log Y ) = Ωk

X(log Y ) ∧ Ωp−k
X p, k ∈ Z (2.1.1)

A section of WkΩ
p
X(log Y ) can be expressed locally as

α =
∑

1≤i1<...<ik≤l

ωi1...ik
dzi1
zi1
∧ ... ∧ dzik

zik
, (2.1.2)

where ωi1...ik is a section of Ωp−k
X . Restrictions of the de Rham differential to the

strata Ỹ k determine the morphisms ρ : Ωp−k
X → (ak)∗Ω

p−k
Ỹ (k) is defined as follows: If

the system of local coordinates is centred at the point P , then, in a neighbourhood

of P , the intersection Yi1 ∩ ... ∩ Yik is given by the equations zi1 = ... = zik = 0 and

hence {zj|j /∈ {i1, ..., ik}} form a system of local coordinates on Yi1 ∩ ... ∩ Yik . Let

ωi1...ik =
∑

fj1...jp−kdzj1 ∧ ... ∧ dzjp−k (2.1.3)

be a section of Ωp−k
X where (j1, ..., jp−k) runs over the (p−k)-tuples of {1, 2, ..., n}\{i1, ..., ik}

and fj1...jp−k is a section ofOX . Then ρ(ωi1...ik) is the restriction of the sections fj1...jp−k

to the intersections Yi1 ∩ ... ∩ Yik . Set

R(α) =
∑

1≤i1<...<ik≤l

ρ(ωi1...ik) (2.1.4)

The map R is referred to as the Poincaré residue map.
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Theorem 2.1. The Poincaré residue map induces an isomorphism of complexes of

sheaves

R : GrWk Ω∗X(log Y )
∼−→ (ak)∗Ω

∗
Ỹ (k) [−k] (2.1.5)

Proof. We refer to [27].

Since f : X → D is a holomorphic map which is smooth on X∗ = X − f−1(0),

one deduces an inclusion f ∗Ω1
D(log 0) ⊂ Ω1

X(log Y ): we denote the quotient by

Ω1
X/D(log Y ). Setting Ωp

X/D(log Y ) = ∧pΩ1
X/D(log Y ), we can form the complex

Ω∗X/D(log Y ). If (t) is the local coordinate on D, suppose that t ◦ f = ze11 ...z
el
l then

Ωp
X/D(log Y )P is the module with generators {dz1

z1
, ..., dzl

zl
, dzl+1, ..., dzn} subject to the

relation
∑l

i=1 ei
dzi
zi

= 0. Let θ denote the form:

θ := f ∗(
dt

t
) =

l∑
i=1

ei
dzi
zi

(2.1.6)

2.2 Cohomology of the universal fibre X̃∗

With all the notations as before, we set X∗ = X\Y to be the complement of the

fibre over 0. With D∗ = D\{0}, we let D̃∗ denote the universal covering of D∗ and

we let X̃∗ denote the fibre product X ×D D̃∗. Then, the universal covering map

j : D̃∗ → D is defined by j(u) = exp(2πiu). We denote by k : X̃∗ → X the

composition of the natural projection X̃∗ → X∗ with the inclusion X∗ → X. The

inclusion f−1(0) = Y ↪→ X is denoted by i. One has the following Cartesian diagram:

X̃∗
k−−−→ X

i←−−− Yy f

y y
D̃∗

j−−−→ D ←−−− {0}

(2.2.1)
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Proposition 2.2. For any point s ∈ D∗, there exists an isomorphism of complexes

of sheaves on Xs

Ω∗X/D(log Y )⊗OX OXs|Xs
∼−→ Ω∗Xs (2.2.2)

Proof. See [38, 7.5].

The following result shows that the de Rham cohomology of X̃∗ can be identified

with the hypercohomology of the complex of relative differential forms with logarith-

mic poles.

Proposition 2.3. There exist isomorphisms

Hq(X̃∗,C) ∼= Hq(Y, i·k∗Ω
∗
X̃∗

) ∼= Hq(Y,Ω∗X/D(log Y )⊗OX OY ) q ∈ Z (2.2.3)

Proof. See [38, 7.7–7.19]

The form θ = f ∗(dt
t
) =

∑l
i=1 ei

dzi
zi

defined in the previous section is, by construc-

tion, a section of W1Ω1
X(log Y ). Taking wedge products with the form θ therefore

allows us to ascend levels of the weight filtration on Ω∗X(log Y ). Let I (Y red) denote

the sheaf of ideals associated to the reduced subscheme underlying Y . The following

result will be used in the next section.

Proposition 2.4. (1) The sequence

Ω∗X(log Y )
∧θ−→ Ω∗X(log Y )[1]

∧θ−→ Ω∗X(log Y )[2] (2.2.4)

is an exact sequence of complexes on X.
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(2) The following sequence of complexes of sheaves on X is exact:

0→ I (Y red)Ω∗X(log Y )→ W0Ω∗X(log Y )
∧θ→ GrW1 Ω∗X(log Y )[1]

∧θ→ GrW2 Ω∗X(log Y )[2]→

(2.2.5)

Proof. See [38, 12.2–12.3].

In terms of the disjoint unions Ỹ (k) (defined in the previous section), the form θ

may be understood as follows: For any k ≥ 1, there exist k + 1 distinguished maps

δ1, ..., δk+1 : Ỹ (k+1) −→ Ỹ (k) (2.2.6)

where δm is induced, for instance, by the inclusion

Yi1 ∩ ...Yim−1 ∩ Yim ∩ Yim+1 ∩ ... ∩ Yik+1

δm−→ Yi1 ∩ ...Yim−1 ∩ Yim+1 ∩ ... ∩ Yik+1
(2.2.7)

which embed a k + 1-“stratum” into a k-“stratum” by forgetting the corresponding

irreducible component Yim . Then, we can define

d′ : (ak)∗Ω
p

Ỹ (k) −→ (ak+1)∗Ω
p

Ỹ (k+1) (2.2.8)

by setting d′ =
∑k+1

m=1(−1)p+mδ∗m. It is clear that d′ is a differential and it may be

shown that, for ω ∈ (ak)∗Ω
p

Ỹ (k) , one has

d′(ω) = −ω ∧ θ (2.2.9)

By applying the Poincaré residue map (2.1.4), we obtain an isomorphism of sheaves

(ak)∗Ω
p

Ỹ (k)
∼= GrWk Ωp+k

X (log Y ).
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We define

d′′ : GrWk Ωp+k
X (log Y ) −→ GrWk Ωp+k+1

X (log Y ) (2.2.10)

to be the natural de Rham differential. Notice that, in view of the above isomorphism,

d′′ can be interpreted as the morphism

d′′ : (ak)∗Ω
p

Ỹ (k) −→ (ak)∗Ω
p+1

Ỹ (k) (2.2.11)

2.3 Steenbrink’s complex

For nonnegative integers p and q, Steenbrink has defined the bicomplex of sheaves of

OX-modules

Apq = Ωp+q+1
X (log Y )/WpΩ

p+q+1
X (log Y ) (2.3.1)

The differential d′′ : Apq → Ap,q+1 is induced by differentiation on the complex

Ω∗X(log Y ) and the differential d′ : Apq → Ap+1,q is defined by d′(ω) = (−1)pω∧θ. Let

A· denote the total complex associated to the bicomplex (A··, d′, d′′). The projection

on the next level of the weight filtration defines an operator

N : Apq −→ Ap+1,q−1 N(a) = a (2.3.2)

By definition, Ω1
X/D(log Y ) = Ω1

X(log Y )/f ∗Ω1
D(log 0) and hence we have the exact

sequence

Ωq−1
X (log Y )

∧θ−→ Ωq
X(log Y ) −→ Ωq

X/D(log Y ) −→ 0 (2.3.3)
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From (2.2.4), we know that the sequence of sheaves

Ωq−1
X (log Y )

∧θ−→ Ωq
X(log Y )

∧θ−→ Ωq+1
X (log Y ) (2.3.4)

is exact. Consequently, we deduce an injection

∧ θ : Ωq
X/D(log Y ) ↪→ Ωq+1

X (log Y ) (2.3.5)

Moreover, from (2) of Proposition 2.4, it follows that, for ω ∈ Ωq
X/D(log Y ) we have ω∧

θ ∈ W0Ωq+1
X (log Y ) if and only if ω is a section of the submodule I (Y red)Ωq

X(log Y ).

By definition, A0q = Ωq+1
X (log Y )/W0Ωq+1

X (log Y ) and hence there is an induced mor-

phism of sheaves

φ : Ωq
X/D(log Y )⊗OX OY red −→ A0q (2.3.6)

which induces, in turn, a morphism of complexes

φ : Ω∗X/D(log Y )⊗OX OY red −→ A· (2.3.7)

Further, we define the filtrations L, W and F on A· as follows

LnA
pq = W2p+n+1Ωp+q+1

X (log Y )/WpΩ
p+q+1
X (log Y )

WnA
pq = Wp+n+1Ωp+q+1

X (log Y )/WpΩ
p+q+1
X (log Y )

F nApq =

 Apq if p ≥ n

0 if p < n

(2.3.8)

Proposition 2.5. (1) Let σ≥ be the naive filtration on the complex Ω∗X/D(log Y ) ⊗
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OY red. Then, the map of filtered complexes

φ : (Ω∗X/D(log Y )⊗OX OY red , σ≥)→ (A·, F ) (2.3.9)

is a filtered quasi-isomorphism.

(2)

φ : (Ω∗X/D(log Y )⊗OX OY red ,W )→ (A·, F ) (2.3.10)

is a filtered quasi-isomorphism.

(3) φ is a quasi-isomorphism.

Proof. See [38, §13].

It follows from Proposition 2.5 and (2.2.3) that the hypercohomology of the com-

plex A· computes the cohomology of the universal fibre X̃∗. The spectral sequence

associated to the filtration L on Apq therefore induces a filtration on Hr(X̃∗,C) for

each r ∈ Z.

We recall that if A ⊂ R is a Noetherian ring such that A⊗Z Q is a field, a A-mixed

Hodge structure consists of the following data:

(1) a finitely generated A-module HA,

(2) a finite increasing filtration W on HA ⊗Z Q and

(3) a finite decreasing filtration F on HA ⊗A C such that for all p, q ∈ Z with

p+ q = n+ 1,

F pGrWn (HA ⊗A C)⊕ F qGrWn (HA ⊗A C) = GrWn HA ⊗A C (2.3.11)

(using the filtration induced on each GrWn (HA ⊗A C) by F ).
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Theorem 2.6. Consider the filtration L induced on Hq(X̃∗,C) by the spectral se-

quence

LE
−r,q+r
1 ⇒ GrLr+qH

q(X̃∗,C) q ∈ Z (2.3.12)

Then the pair (Hq(X̃∗,Q), L) along with the triple (Hq(X̃∗,C), L, F ) define a Q-mixed

Hodge structure on Hq(X̃∗,Q) for all q ∈ Z.

Proof. See [38, 13.27].

The terms LE
−r,q+r
1 of the spectral sequence associated to L can be described more

fully. Using the Poincaré residue theorem, we have the decomposition

LE
−r,q+r
1 = Hq(Y,GrLr A

·) =
⊕
k≥0,−r

Hq−r−2k(Ỹ (r+2k+1),C) (2.3.13)

We consider the terms WE
−r,q+r
1 of the spectral sequence associated to the fil-

tered complex (Ω∗X(log Y ),W, F ). Then, using the Poincaré residue theorem, we have

isomorphisms

WE
−r,q+r
1

≈−→ Hq(Ỹ (r),ΩỸ (r) [−r]) = Hq−r(Ỹ (r),C) (2.3.14)

The differential d1 on the terms WE
−r,q+r
1 fits into the following commutative diagram

WE
−r,q+r
1

≈−−−→ Hq−r(Ỹ (r),C)

d1

y −γ(r)

y
WE

−r+1,q+r
1

≈−−−→ Hq−r+2(Ỹ (r−1),C)

(2.3.15)

where γ(r) =
∑r

m=1(−1)m−1(δm)∗ and the δm’s denote the inclusions of Ỹ (r) into

Ỹ (r−1). We set ρ(r) =
∑r

m=1(−1)m−1(δm)∗.
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We introduce the following complex

Ki,j,k
S =

 H i+j−2k+n(Ỹ (2k−i+1),C) if k ≥ 0, i

0 otherwise
(2.3.16)

Summing over k produces the following complex

Ki,j
S =

⊕
k∈Z

Ki,j,k
S (2.3.17)

We notice that the Poincaré residue map determines isomorphisms

Res : LE
−r+1,q+r
1

≈−→ K−r,q−nS (2.3.18)

The differentials on the bicomplex K∗∗S coincide with the two differentials on the

spectral sequence LE1

d′1 : Ki,j,k
S −→ Ki+1,j+1,k+1

S d′′1 : Ki,j,k
S −→ Ki+1,j+1,k+1

S (2.3.19)

Moreover the map N on K∗∗∗S is induced by

N : Ki,j,k
S −→ Ki+2,j,k+1

S (2.3.20)

Here, we can check that Res−1d′1 = ( ∧ θ) and Res−1d′′1 = −(γ). Hence, it follows

that

d′1 = ρ d′′1 = −γ N = Id (2.3.21)

in terms of the cohomologies of the Ỹ (r), i.e. on the other side of the Poincaré

residue isomorphism. We will denote the morphisms d′1 and d′′1 simply by d′ and d′′
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respectively. Finally, we recall the following important result:

Theorem 2.7. If the variety Ỹ (1) is Kahler, then

(1) Ki,j
S carries a Q-Hodge structure of weight j + i− n.

(2) The morphism N : Ki,j
S → Ki+2,j

S (−1) is a morphism of Hodge structures.

(3) For all i ≥ 0, N induces an isomorphism

N i : K−i,jS −→ Ki,j
S (−i) (2.3.22)

of Hodge structures.

(4) The primitive part of K−i,jS is K−i,j,0S , i.e.

K−i,j,0S = Ker(N i+1) ∩K−i,jS (2.3.23)

Proof. See [28, 2.9].

2.4 Cohomology of the fibre at infinity: Consani’s complex

In Arakelov geometry, the fibre at archimedean infinity is a manifold X of dimension

n ≥ 0, say, over C or R. Consani [18] has defined a bicomplex (K ··, d′, d′′) with a

monodromy type map N that is analogous to Steenbrink’s complex described in the

last section.

We denote by (Ωa,b
X +Ωb,a

X )R(p) the abelian group of real differentials of type (a, b)+

(b, a) on X along with the p-th Hodge-Tate twist, i.e.

(Ωa,b
X + Ωb,a

X )R(p) = (2π
√
−1)p(Ωa,b

X + Ωb,a
X )R p ∈ Z (2.4.1)

49



For all i, j, k ∈ Z, we define the term

Ki,j,k =


⊕

a≤b,a+b=j+1
|a−b|≤2k−i

(Ωa,b
X + Ωb,a

X )R
(
n+j−i

2

)
if k ≥ max{0, i}

0 otherwise

(2.4.2)

We denote by ∂ and ∂ the usual partial differential operators on any Ωa,b
X . Then one

introduces the following maps:

d′ : Ki,j,k → Ki+1,j+1,k+1 d′ = ∂ + ∂

d′′ : Ki,j,k → Ki+1,j+1,k d′′ = i(∂ − ∂)

N : Ki,j,k → Ki+2,j,k+1 N(a) = (2πi)−1a

(2.4.3)

We remark that d′′ should be considered as composed with a projection onto its range.

We will also maintain the notation

d = d′ + d′′ (2.4.4)

For i, j ∈ Z, we write Ki,j =
⊕

k∈ZK
i,j,k and for a fixed index r, we let Kr =⊕

i+j=rK
i,j. Consider the bicomplex (K ··, d′, d′′) as well as its associated total com-

plex (K ·, d).

Note that [N, d′] = [N, d′′] = 0 where [a, b] = ab− ba.

Let p ∈ Z≥0. Recall that the real Deligne-Beilinson cohomology of XC is the

hypercohomology of the complex

R(p)D : R(p)→ Ω0
X → Ω1

X → ...→ Ωp−1
X → 0 (2.4.5)

i.e. we define Hq
D(X/C,R(p)) = Hq(X,R(p)D). If X is defined over R, we can still
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form the complex R(p)D above. In this case, the complex R(p)D carries a complex

conjugation which we refer to as F̄∞. We refer to the invariants under conjugation

F̄∞ as the real Deligne-Beilinson cohomology, i.e.

HD(X/R,R(p)) = Hq(X,R(p)D)F̄∞=id (2.4.6)

Let (X i, diX) and (Y i, diY ) denote two complexes and suppose that f = (f i : X i → Y i)

is a morphism between them. Then the complex (X i+Y i−1, (diX+f)+di−1
Y ) is referred

to as the cone of f .

Theorem 2.8. Let p be a nonnegative integer. Then, the complex Cone(N : Kq−2p,q−1 →

Kq−2p+2,q−1) (q ∈ Z) is quasi-isomorphic to the complex (Cq
D(p), dD), defined as fol-

lows

Cq
D(p) :=



( ⊕
a+b=q−1
|a−b|≤2p−q−1

Ωa,b
X

)
R

(p− 1) if q ≤ 2p− 1

( ⊕
a+b=q

|a−b|≤q−2p

Ωa,b
X

)
R

(p) if q ≥ 2p

(2.4.7)

with differentials, which for a ∈ Cq
D(p) are defined as;

dD =


d′′(a) if q < 2p− 1

2π
√
−1d′d′′(a) if q = 2p

d′(a) if q ≥ 2p

(2.4.8)

The homology of the complex, in each degree q, computes the real Deligne cohomology

group of X/C. Taking F̄∞ invariants of the homology gives us HD(X/R,R(p)).

Proof. See [18, §4] or [16, §2.19].
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3 The Steenbrink complex and the Cyclic Homol-

ogy of the Sheaf of differential operators

—————————————————————————————————————

Let X be a complex manifold along with a map f : X → D to the unit disc D.

Suppose that the fibres f−1(t) are smooth for all t 6= 0, while the fibre f−1(0) is a

divisor Y with normal crossings on X. We denote the complement X−Y by X∗. Let

D̃∗ be a universal covering for D∗ = D− {0}. Denote the fibre product X ×D D̃∗ by

X̃∗.

As discussed in the previous chapter, Steenbrink (cf. [37], [38]) has shown that the

cohomology H∗(X̃∗,C) can be computed by as the hypercohomology of the bicomplex

Apq, p ≥ 0, defined as

Apq = Ωp+q+1
X (log Y )/WpΩ

p+q+1
X (log Y ) (3.0.9)

Furthermore, there exists a monodromy operator N , of bidegree (1,−1) on A∗∗, de-

fined as the projection

N : Apq = Ωp+q+1
X (log Y )/WpΩ

p+q+1
X (log Y ) −→ (3.0.10)

Ωp+q+1
X (log Y )/Wp+1Ωp+q+1

X (log Y ) = Ap+1,q−1

In this chapter, we consider the complex of nearby cycles as defined in [22], or more

precisely, a resolution ψ∗∗ of the nearby cycles complex, which computes the coho-
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...
...

...

u2Ω0
X(log Y )

d′′

OO

d′ //

N

((PPPPPPPPPPPP
u1Ω1

X(log Y )

d′′

OO

d′ //

N

((PPPPPPPPPPPP
u0Ω2

X(log Y )

d′′

OO

u1Ω0
X(log Y )

d′′

OO

d′ //

N

((PPPPPPPPPPPP
u0Ω1

X(log Y )

d′′

OO

u0Ω0
X(log Y )

d′′

OO

(3.0.14)

Figure 1: The bicomplex ψ∗∗

mology of X̃∗. The bicomplex ψ∗∗ is defined as follows

ψ−p,q = Cup ⊗ Ωq−p
X (log Y ) p ≥ 0 (3.0.11)

along with differentials

d′(up ⊗ ω) = pup−1 ⊗ θ ∧ ω d′′(up ⊗ ω) = up ⊗ d(ω) (3.0.12)

where d is the exterior differential and θ = f ∗(dt/t) is the pullback of the logarithmic

form dt/t on D as defined in (2.1.6) in Section 2.1. In [28], Guillén and Navarro

Aznar define a map µ : ψ∗∗ → A∗∗ of bicomplexes that induces a quasi-isomorphism

of complexes. The bicomplex ψ∗∗ supports an operator (monodromy) defined as

N(up ⊗ ω) = pup−1ω (3.0.13)

The map N does not commute with µ, but N ◦ µ and µ ◦ N are, in fact, homotopy

equivalent (see [28, 2.5]).

In this chapter, we show (see Section 3.2, Corollary 3.9) that the (hyper)cohomology
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of the columns of the nearby cycles complex ψ∗∗ is isomorphic to the Hochschild ho-

mology HH∗(DX∗) of the sheaf DX∗ of differential operators on X∗. This is defined to

be the hypercohomology of the sheafification of the hoschschild complexes associated

to the ring of differential operators D(U) for each open U in X∗. This construction

is reviewed in Appendix 1. By a result of Wodzicki (see [46] or Proposition A.3.13

), we know that if U is a Stein manifold of dimension n over C, then the Hochschild

and cyclic homologies of the ring D(U) are determined by the de Rham cohomology

of U as

HHq(D(U)) ∼= H2n−q
dR (U) (3.0.15)

HCq(D(U)) ∼= H2n−q
dR (U)⊕H2n−q+2

dR (U)⊕ . . . (3.0.16)

Also, we have the long exact periodicity sequence of Connes (see [31, 2.2.1]):

. . . −−−→ HHq(D(U))
I−−−→ HCq(D(U))

S−−−→ HCq−2(D(U))
B−−−→ . . .

(3.0.17)

connecting the Hochschild and cyclic homologies of D(U). Using the fact that every

point on X∗ has a fundamental system of neighbourhoods that are Stein, we will

establish similar isomorphisms (in Proposition A.3.17), as well as a corresponding

long exact sequence periodicity sequence for the sheaf of differential operators DX∗ .

Remark 3.1. Since the complexes used in defining the Hochschild and cyclic ho-

mology are not bounded below, the notion of hypercohomology is not defined in the

classical sense. Here we use the notion of hypercohomology obtained by writing an

unbounded (below) complex as a limit of its “good” truncations.

Furthermore, we show in Corollary 3.9 that the filtration F ′j , j ≥ 0 by columns

on the total complex Tot(ψ∗∗), i.e. ((F ′jTot(ψ
∗∗))∗ =

⊕
r+s=∗,r≥−j ψ

rs, d′ + d′′) of the
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bicomplex ψ∗∗ coincides with the kernel filtration FjTot(ψ
∗∗) = Ker(N j), j ≥ 0 on

ψ∗∗. These filtrations are bounded below (i.e. F0Tot(ψ
∗∗) = 0, F ′0Tot(ψ

∗∗) = 0) and

exhaustive (i.e. Tot(ψ∗∗) = ∪j≥0Fjψ
∗∗, Tot(ψ∗∗) = ∪j≥0F

′
jψ
∗∗ ). Corresponding to

the filtration F ′j by columns on Tot(ψ∗∗), we have a converging spectral sequence in

hypercohomology

E−p,2n+p−q
1 := H2n−q(F ′p/F

′
p−1)⇒ H2n−q(ψ∗) ∼= H2n−q(A∗) (3.0.18)

We will show in Section 3.2 that H2n−q(F ′p/F
′
p−1) ∼= HHq(DX∗). In particular, this im-

plies that the hypercohomology of the graded pieces of the filtration Fjψ
∗ = Ker(N j),

j ≥ 0, compute the Hochschild homology of DX∗ .

We construct the cyclic complex for DX∗ and the periodicity long exact sequence

associated to it. In Proposition 3.12, we show that the periodicity operator S ap-

pearing in the cyclic homology of DX∗ coincides with the operator N acting on the

complex ψ∗∗.

In Chapter 4, following Connes and Karoubi [13], we shall define the algebraic,

topological and relative K-theory groups of the sheaf DX∗ and show that there exists

a long exact sequence of these K-theory groups that maps to the periodicity sequence

in the cyclic homology of DX∗ .

3.1 The complex of nearby cycles and de Rham cohomology

Let D = {z ∈ C||z| < 1} be the unit disc, D∗ = D − {0} and X be an algebraic

variety with a proper morphism f : X −→ D. We suppose that each of the fibres

Xt = f−1(t), t 6= 0 is nonsingular and of same dimension, while Y = f−1{0} is a

divisor with normal crossings on X. Let D̃∗ be the universal cover of D∗, the map
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p′ : D̃∗ −→ D being given by p′(u) = e2πiu. Denote by D̃ = D̃∗ ∪ {0} the space

obtained from D̃∗ by adjoining a point 0 such that

(1) D̃∗ is open in D̃.

(2) p : D̃ → D extends the map p′ : D̃∗ → D∗ and p(0) = 0.

(3) The system p−1(U), where U runs through all the neighbourhoods of 0 in D, forms

a fundamental system of neighbourhoods of 0 in D̃.

Set

X̃ = X ×D D̃ X∗ = X − Y = X ×D D∗ X̃∗ = X∗ ×D D̃∗ = X̃ − Y (3.1.1)

With these definitions, we have the commutative diagram

Y
ĩ−−−→ X̃

j̃←−−− X̃∗

id

y p

y p′

y
Y

i−−−→ X
j←−−− X∗

(3.1.2)

cartesian above the diagram

{0} ĩ−−−→ D̃
j̃←−−− D̃∗

id

y p

y p′

y
{0} i−−−→ D

j←−−− D∗

(3.1.3)

Let us denote by D the category of sheaves of sets on D whose restriction to D∗

is locally constant. If Y is any topological space, we can consider the collection of

sheaves Y ×D , i.e. the category of sheaves of sets on Y ×D whose restriction to D lies

in D . This category of sheaves Y × D admits the following alternative descriptions

(cf [22, 1.2.4])

(1) Y ×D is the category of sheaves (of sets) F on Y ×D such that D∗ can be covered
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by open sets U such that F |Y × U is the inverse image of a sheaf on Y .

(2) For t ∈ D∗, Y ×D is the category of triples (F0, Ft, α) such that

(a) F0 is a sheaf on Y .

(b) Ft is a sheaf on Y , provided with an action of π1(D∗, t).

(c) α : F0 → Ft is a morphism of sheaves, the image of which is contained in the

set of invariants of Ft under the action of π1(D∗, t), i.e. Im(α) ⊂ (Ft)
π1(D∗,t),

(3) Y ×D is the category of triples (F0, Fη, α) such that

(a) F0 is a sheaf on Y .

(b) Fη is a functor from the category of universal coverings of D∗ to sheaves on Y .

The category of universal coverings of D∗, consists of a single object, say, for

instance, the upper half plane H, while the morphisms are the automorphisms of this

space that reduce to identity under the projection to D∗, denoted by AutD∗(H). As

such, an action of π(D∗, t) = AutD∗(H) on objects in a category C may be encoded

as a functor from the category of universal coverings to C .

(c) α : F0 → Fη is a morphism of functors, where F0 denotes the constant functor

having value F0.

We also need to consider a category of sheaves Y × D∗ for which we have three

equivalent definitions (cf [22, 1.2.4])

(1)’ The topos of sheaves F on Y ×D∗ such that D∗ can be covered by open sets U

such that the restriction F |Y × U is the inverse image of a sheaf on Y .

(2)’ For t ∈ D∗, the topos of sheaves Ft on Y , provided with an action of π1(D∗, t).

(3)’ The topos of functors from the category of universal coverings of D∗ to the

category of sheaves on Y .
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Let F be a sheaf on X. In the language of (3) above, we describe a functor

Ψ : (Sheaves on X) −→ (Sheaves on Y ×D) (3.1.4)

as

Ψ(F ) = (i∗F, ĩ∗j̃∗((jp
′)∗F ), α) (3.1.5)

where i∗ denotes the inverse image functor (and not the pullback!) and α is the

adjunction morphism

α : i∗F = ĩ∗p∗F −→ ĩ∗j̃∗((jp
′)∗)F ) = ĩ∗j̃∗j̃

∗p∗F (3.1.6)

Similarly, given a sheaf F ∗ on X∗, in the language of (3)’ above, we define a functor

Ψη : (Sheaves on X∗) −→ (Sheaves on Y ×D∗) (3.1.7)

as

Ψη(F
∗) = ĩ∗j̃∗(p

′∗F ∗) (3.1.8)

We are interested in their derived functors

RΨ : D+(X) −→ D+(Y ×D)

RΨη : D+(X∗) −→ D+(Y ×D∗) (3.1.9)

The functor RΨη above is referred to as the functor of nearby cycles.

We now apply this to the de Rham cohomology. Denote by Ω∗
X̃∗

the de Rham com-

plex of holomorphic differential forms on X̃∗. By the holomorphic Poincaré lemma,

(Ω∗
X̃∗
, d) forms a resolution of the constant sheaf C on X̃∗, which, moreover, is j̃∗-
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acyclic. Denote by D+(X,C) the (bounded below) derived category of sheaves of

finite dimensional C-vector spaces on X̃. Then we have an isomorphism of complexes

j̃∗Ω
∗
X̃∗

∼−→ Rj̃∗C (3.1.10)

in D+(X,C).

Proposition 3.2. Let V be a complex local system on X∗. The quasi-isomorphism

V
∼→ Ω∗X∗(V ) (which is a consequence of Poincaré lemma) induces a quasi-isomorphism

ĩ∗j̃∗Ω
∗
X̃∗

(p′∗V )
∼−→ RΨη(V ) (3.1.11)

Proof. See [22, 4.4]

We therefore have a quasi-isomorphism

ĩ∗j̃∗Ω
∗
X̃∗

∼−→ RΨη(C) (3.1.12)

By abuse of notation, we shall still denote by f the restriction f : X∗ → D∗. Let

F be a sheaf of f ∗OD∗-modules on X∗ and let F̄ denote the inverse image on X̃∗.

We choose a holomorphic local coordinate z : D → C, with z(0) = 0 and on the

universal cover D̃∗, we define the function u = log(z) such that exp(u) = z. We can

set

zα = exp(αu) = exp(α log(z))

The action of π1(D∗) on the universal covering D̃∗ extends to the space X̃∗ = X×DD̃∗

and hence to all locally constant sheaves on X̃∗. Hence, the group π1(D∗) acts on

H0(X̃∗, F̄ ) and let T denote the positive generator for the group π1(D∗).
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Definition 3.3. An element x ∈ H0(X̃∗, F̄ ) is said to be finitely determined if the

elements {T i(x)}i∈Z generate a finite dimensional subspace (over C) of H0(X̃∗, F̄ ).

Moreover, we will say that x is finitely determined unipotent (resp. finitely de-

termined quasi-unipotent) if there exists an integer A (resp. integers A and B) such

that (T − 1)A(x) = 0 (resp. (TB − 1)A(x) = 0).

Define N = log T
2πi

on the space of finitely determined quasi-unipotent sections x ∈

H0(X̃∗, F̄ ) by the finite sum

N(x) =
−1

2πi

∑
n>0

(1− T )n

n
x (3.1.13)

Now suppose that the sheaf F on X∗ is actually the restriction of a sheaf F on X

(which we also denote by F ). Further, suppose that the sheaf F on X is coherent

and its restriction to X∗ is locally free. Under these additional hypotheses, we define

Ψm
η (F ) (resp. Ψmu

η (F ), resp. Ψmqu
η (F )) to be the subsheaf of ĩ∗j̃∗(F̄ ) consisting

of sections that are finitely determined (resp. finitely determined unipotent, resp.

finitely determined quasi-unipotent).

In particular, consider the case where F = Ωi
X̃∗

, for any given i. Then, we have a

natural morphism of complexes

Ψmqu
η (ΩX∗) ↪→ ĩ∗j̃∗Ω

∗
X̃∗
−→ RΨη(C) (3.1.14)

induced by the morphism in Proposition 3.2. Then, Deligne proves the following

theorem (see [22, Theorem 4.13]):

Proposition 3.4. The natural morphism

Ψmqu
η (Ω∗X∗) −→ RΨη(C) (3.1.15)
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is a quasi-isomorphism.

Combining this with the isomorphism

ĩ∗j̃∗Ω
∗
X̃∗

∼−→ RΨη(C) (3.1.16)

of Proposition 3.2, we obtain quasi-isomorphisms

ĩ∗j̃∗Ω
∗
X̃∗

∼−→ RΨη(C)
∼←− Ψmqu

η (Ω∗X∗) (3.1.17)

Moreover, the sheaves Ωi
X̃∗

, are j̃∗-acyclic resolution of CX̃∗ and hence it follows,

Hp(X̃, j̃∗Ω
∗
X̃∗

) ≈ Hp(X̃∗,C) (3.1.18)

The functor ĩ∗ being exact, we have

Hp(Y, ĩ∗j̃∗Ω
∗
X̃∗

) ≈ Hp(X̃∗,C) (3.1.19)

and hence all three complexes ĩ∗j̃∗Ω
∗
X̃∗

RΨη(C) and Ψmqu
η (Ω∗X∗) compute the coho-

mology of X̃∗.

In [38, Section 13], Steenbrink has defined the complex

Apq = Cu[p+1] ⊗C Ωp+q+1
X (log Y )/WpΩX(log Y )p+q+1 (3.1.20)

along with the maps

d′ : Apq −→ Ap+1,q d′(u[p+1] ⊗ ω) = u[p+2] ⊗ θ ∧ ω

d′′ : Apq −→ Ap,q+1 d′′(u[p+1] ⊗ ω) = u[p+1] ⊗ dω
(3.1.21)
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where we denote, following [28],

u[p] = up/p! u[p] = (−1)p−1(p− 1)!u−p

It follows from the theory developed by Deligne [22] and Steenbrink [38], that this

complex is, in fact, a resolution of the nearby cycles complex. The monodromy on

Steenbrink’s complex has the explicit description

N : Apq → Ap+1,q−1 (3.1.22)

defined as

N(u[p+1] ⊗ ω) = u[p+2] ⊗ ω (3.1.23)

Also, [N, d′] = [N, d′′] = 0. We recall that the maps are as indicated in the following

diagram :

X̃∗
j̃−−−→ X

i←−−− Yy f

y y
D̃∗

p̃−−−→ D ←−−− {0}

(3.1.24)

where D̃∗ is a universal cover for the punctured disc D∗ with the map p : D̃∗ → D∗

given by p(u) = eu. Further, we have X∗ = f−1(D∗). If t is a chosen uniform

coordinate for D, we set θ = f ∗(dt/t).

Following [28, 2.2], let us define the following complex of sheaves on X, which is

yet another resolution of the nearby cycles complex.

ψ∗(C) = C[u]⊗C Ω∗X(log Y ) =
∑
p≥0

Cup ⊗C Ω∗X(log Y ) (3.1.25)
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extending the exterior differential by d(u⊗1) = 1⊗θ. Let Rψ∗(C) be the the complex

of nearby cycles, defined as Rψ∗(F) = i∗Rj̃∗j̃
∗F for a sheaf F on X.

Then the double complex ψ∗∗(C) defined by

ψ(C)−p,q = Cup ⊗C Ωq−p
X (log Y ) p ≥ 0 (3.1.26)

with the differentials

d′ : ψ(C)−p,q −→ ψ(C)−p+1,q d′(up ⊗ ω) = (pup−1 ⊗ θ ∧ ω)

d′′ : ψ(C)−p,q −→ ψ(C)−p,q+1 d′′(up ⊗ ω) = (up ⊗ dω)
(3.1.27)

is a resolution of the complex ψ∗(C). On ψ∗(C), the momodromy is expressed by the

operator,

T : ψ∗(C) −→ ψ∗(C) (3.1.28)

given by

T (up ⊗ ω) = (u+ 2πi)p ⊗ ω (3.1.29)

If we let N = log T/2πi as before, we note that N has the following description on

ψ∗∗(C)

N(u[p] ⊗ ω) = u[p−1] ⊗ ω p ≥ 0 (3.1.30)

By abuse of notation, we shall often refer to ψ∗∗ itself as the nearby cycles complex.

Proposition 3.5. (see [22, Section 4]) There is an isomorphism of hypercohomologies

H∗(Y, ψ∗(C)) ≈ H∗(Y,Rψ∗(C)) ≈ H∗(X̃∗,C)

Proof. We have mentioned that ψ∗∗(C) is a resolution of the nearby cycles complex
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...
...

...

u2Ω0
X(log Y )

d′′

OO

d′ //

N

((PPPPPPPPPPPP
u1Ω1

X(log Y )

d′′

OO

d′ //

N

((PPPPPPPPPPPP
u0Ω2

X(log Y )

d′′

OO

u1Ω0
X(log Y )

d′′

OO

d′ //

N

((PPPPPPPPPPPP
u0Ω1

X(log Y )

d′′

OO

u0Ω0
X(log Y )

d′′

OO

(3.1.31)

Figure 2: The bicomplex ψ∗∗

and hence it induces the isomorphism H∗(Y, ψ∗(C)) ≈ H∗(Y,Rψ∗(C)). The second

part of the statement has already been proved above.

Proposition 3.6. (see [28, (2.5)]) The morphism µ : ψ∗(C) −→ A∗ defined by

µ(u[p] ⊗ ωp) =

 0 if p 6= 0

(−1)|ω0|u[1] ⊗ θ ∧ ω0 if p = 0
(3.1.32)

is a quasi-isomorphism of complexes. Further, if N = log T
2πi

, where T is the monodromy

operator (T may be assumed to be unipotent by making an adequate transformation

z 7→ zN), the morphisms N ◦ µ and µ ◦ N are homotopic. The homotopy is induced

by the map h of bidegree (0,−1) defined as

h(u[p] ⊗ ωp) =

 0 if p 6= 0

(−1)|ω0|u[1] ⊗ ω0 if p = 0
(3.1.33)

Proof. It is clear that [µ, d′′] = [µ, d′] = 0 and hence µ induces a morphism of com-

plexes. The proof that µ is actually a quasi-isomorphism may be found in [33].

Further, we note that h ◦ d′′ + d′′ ◦ h = 0 and N ◦ µ− µ ◦N = h ◦ d′ + d′ ◦ h, whence
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h defines a homotopy from N ◦ µ to µ ◦N .

As mentioned above, the maps N and µ commute only up to homotopy. Consider

the subcomplex Ker(N)∗ of ψ∗(C) and the subcomplex Im(N)∗ of A∗. The weight

filtration W on Ω∗X(log Y ) (see chapter 2) may be extended to ψ∗(C). Following [38];

on the terms Apq, we have two filtrations W and L, given by

WrA
pq = Cu[p+1] ⊗C Wr+p+1Ωp+q+1

X (log Y )/WpΩ
p+q+1
X (log Y )

LrA
pq = Cu[p+1] ⊗C Wr+2p+1Ωp+q+1

X (log Y )/WpΩ
p+q+1
X (log Y )

(3.1.34)

It is important to note that the differentials d′ and d′′ respect the latter filtration

L (usually called the monodromy filtration) and that we have

GrLr A
∗ ∼=

⊕
k≥0,−r

Cu[k+1] ⊗C Gr
W
r+2k+1Ω∗+1

X (log Y ) (3.1.35)

Using the Poincaré residue map described in the previous chapter, the right hand side

is isomorphic to

GrLr A
∗ ∼= ⊕k≥0,−rΩ

∗+1

Ỹ r+2k+1 [−r − 2k − 1] (3.1.36)

where the residue map is extended by Res(u[k+1] ⊗ ω) = Resr+2k+1(ω).

Theorem 3.7. Denote the monodromy on ψ∗∗ by Nψ and the corresponding operator

on A∗∗ by NA. Consider the complexes (Ker(Nψ)∗, d′′) and (Coker(NA)∗, d′′). Then,

we have

(Ker(Nψ)∗, d′′)/W0(Ker(Nψ)∗, d′′) = (Coker(NA)∗, d′′)[−1] (3.1.37)

where W0(Ker(Nψ)∗, d′′) the subcomplex of (Ker(Nψ)∗, d′′) of terms of weight 0.
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Proof. The map Nψ acts by Nψ(u[p] ⊗ ω) = u[p−1] ⊗ ω and hence it is clear that

the kernel of Nψ consists of the terms u[0] ⊗ ω, which form the column ψ0q. Hence

Ker(Nψ)i = Cu0Ωi
X(log Y ).

Similarly, since NA acts as NA(u[p]⊗ω) = u[p+1]⊗ω, the cokernel of NA consists of

the terms u[1] ⊗ ω which form the column A0q = Cu[1] ⊗Ωq+1
X (log Y )/W0Ωq+1

X (log Y ).

Hence, it follows that

(Ker(Nψ)∗, d′′)/W0(Ker(Nψ)∗, d′′) = (Cu0 ⊗ Ωq
X(log Y )/W0Ωq

X(log Y ), d′′)
∼−→

(3.1.38)

(Cu0⊗Ωq+1
X (log Y )/W0Ωq+1

X (log Y ), d′′)[−1] = (A0q, d′′)[−1] = (Coker(NA)∗, d′′)[−1]

(3.1.39)

3.2 The complex Ker(N)∗ and the Hochschild Complex

As recalled in Section 3.1, the bicomplex ψ∗∗(C) is a resolution of the nearby cycles

complex. The monodromy N , which is given by N = log T
2πi

, acts on ψ∗∗(C) as follows;

given u[p] ⊗ ω ∈ ψ−p,q(C), we have

N(u[p] ⊗ ω) = (u[p−1] ⊗ ω) ∈ ψ−p+1,q−1(C) p ≥ 0

Moreover, it is easy to check that N : ψ−p,q(C) → ψ−p+1,q−1(C) commutes with the

differentials d′ and d′′ of ψ∗∗(C), i.e.,

[N, d′] = [N, d′′] = 0
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Therefore, we can consider the subcomplex of Tot(ψ∗∗(C)) given by (Ker(N), d′ +

d′′), which we shall denote by Ker(N)∗. We consider the increasing filtration Fk

on Tot(ψ∗∗(C)) by subcomplexes Fk(Tot(ψ
∗∗(C))) = Ker(Nk)∗, k ≥ 0 and the

graded pieces Fk+1/Fk = Ker(Nk+1)∗/Ker(Nk)∗. Note that the filtration is bounded

below, i.e. F0(Tot(ψ∗∗(C))) = 0 and that it is exhaustive, i.e. Tot(ψ∗∗(C)) =

∪k≥0Fk(Tot(ψ
∗∗(C))).

Proposition 3.8. Let DX∗ denote the sheaf of differential operators on X∗ as defined

in Appendix 1. Then, there are canonical isomorphisms

HHq(DX∗)
∼−→ H2n−q(Ker(N)∗) (3.2.1)

where HH∗(DX∗) denotes the Hochschild homology of the sheaf of differential opera-

tors on X∗ as defined in Appendix 1.

Proof. Since N(u[p] ⊗ ω) = (u[p−1] ⊗ ω), u[p] ⊗ ω lies in Ker(N)∗ if and only if p = 0.

Hence, we have

Ker(N)∗ = ψ0,∗(C) (3.2.2)

From the description of the terms ψ0,∗, the complex Ker(N)∗ can now be written as

Ker(N)i = Cu0 ⊗ Ωi
X(log Y ) (3.2.3)

Let j : X∗ → X denote the open immersion. From [23, 3.1.8], we know that there is

a quasi-isomorphism of filtered complexes

(Ω∗X(log Y ),W )← (Ω∗X(log Y ), τ) ↪→ (j∗Ω
∗
X∗ , τ) (3.2.4)

where W is the weight filtration on the de Rham complex with logarithmic poles
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and τ is the canonical filtration (see [23, 3.1.7] for details). Both W and τ are finite

filtrations (on each term of the complex) and hence we have a quasi-isomorphism of

complexes and an isomorphism on hypercohomologies

H∗(Ker(N)∗)
∼−→ H∗(Ω∗X(log Y ))

∼−→ H∗(X, j∗Ω∗X∗) (3.2.5)

Every point in X∗ has a fundamental system of neighbourhoods that are Stein.

Hence, for any analytic coherent sheaf F on X∗, we have Rij∗F = 0 for i > 0. Hence

the de Rham complex on X∗ is a resolution of the constant sheaf C on X∗ by a

complex of sheaves that are j∗ acyclic. This implies that (see [23, 3.1.7.1])

H∗(X∗,C)
∼→ H∗(X∗,Ω∗X∗)

∼← H∗(X, j∗Ω∗X∗) (3.2.6)

From Theorem A.3.17, we obtain

HHq(DX∗)
∼−→ H2n−q(X∗,ΩX∗) (3.2.7)

Hence it follows that

HHq(DX∗)
∼−→ H2n−q(Ker(N)∗) (3.2.8)

Corollary 3.9. The filtration by columns on Tot(ψ∗∗) coincides with the filtration by

Fj(Tot(ψ
∗∗(C))) = Ker(N j)∗, j ≥ 0 and moreover, the Hochschild homology of DX∗

can be computed as (for k ≥ 0)

HHq(DX∗) ∼= H2n−q(Ker(Nk+1)∗/Ker(Nk)∗) ∼= H2n−q(grkITot(ψ
∗∗)) (3.2.9)
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where grkIψ
∗∗(C) denote the graded pieces corresponding to the filtration of ψ∗∗(C) by

columns.

Proof. For any k ≥ 0, we have that Fk(Tot(ψ
∗∗(C))) = Ker(Nk)∗ comprises the

terms ψp,q where p ≥ −k + 1. Consequently, we have

Ker(Nk+1)∗/Ker(Nk)∗ = ψ−k,∗ (3.2.10)

We see that Ker(Nk) consists of all terms of Tot(ψ∗∗) that come from columns 0,

1,...,k. Therefore Fk coincides with the filtration by columns on Tot(ψ∗∗) and, using

Proposition 3.8, we have

HHq(DX∗) ∼= H2n−q(Ker(Nk+1)∗/Ker(Nk)∗) ∼= H2n−q(grkIψ
∗∗) (3.2.11)

3.3 The Connes periodicity operator and the monodromy

operator

In the previous section, we have seen that the graded pieces of the filtration on

Tot(ψ∗∗) by FjTot(ψ
∗∗(C)) = Ker(N j), j ≥ 0 compute the Hochschild homology of

DX∗ . Furthermore, we have shown in Corollary 3.9 that the filtration by Ker(N j),

j ≥ 0 coincides with the filtration by columns of ψ∗∗. This yields an increasing

filtration on the associated total complex ψ∗, which, moreover, bounded below and

exhaustive. Consequently, we have a spectral sequence in hypercohomology

HHq(DX∗)
∼
= E−p,2n+p−q

1 ⇒ H2n−q(ψ∗) (3.3.1)
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We will now define a triple complex BC∗∗∗ by “vertically stacking” copies of the

bi-complexes ψ∗∗(C) in a certain way. Then, a “column” of the triple complex is a

bicomplex BCp∗∗ obtained by fixing the first index. The “column” BCp∗∗ therefore

consists of a column from each copy of ψ∗∗ that has been stacked to form the triple

complex BCp∗∗.

In Theorem 3.10, we shall show that each of the “columns” BCp∗∗ is quasi-isomorphic

to the complex computing cyclic homology of DX∗ . This is a counterpart to Corollary

3.9, where we showed that the columns of ψ∗∗(C) are quasi-isomorphic to Hochschild

complexes for DX∗ .

The ψ∗∗(C) complexes stacked vertically to form the complex BC∗∗∗ induce a mon-

odromy operator N on BC∗∗∗ and hence on each column BCp∗∗. We have just men-

tioned that the column BCp∗∗ is quasi-isomorphic to the cyclic homology complex of

DX∗ . Therefore the hypercohomology of each column BCp∗∗ carries a periodicity oper-

ator S. We will also show in Theorem 3.10 that, in this formulation, the monodromy

operator N coincides with the Connes periodicity operator S in each column BCp∗∗.

Finally, in Theorem 3.11, we show that the filtration by columns BCp∗∗ on the total

complex Tot(BC∗∗∗) yields a spectral sequence converging to the hypercohomology of

BC∗∗∗ whose E1-terms are cyclic homologies of DX∗ . This is a counterpart to (3.3.1)

above.

Consider the following triple complex of sheaves;

BCp,q,r = ψp+r,q−2r = Cu−p−r ⊗ Ωq+p−r
X (log Y ) p, q, r ∈ Z, p+ r ≤ 0 (3.3.2)

along with maps
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d′ : BCp,q,r → BCp+1,q,r d′(up ⊗ ω) = pup−1 ⊗ θ ∧ ω

d′′ : BCp,q,r → BCp,q+1,r d′′(up ⊗ ω) = up ⊗ dω
(3.3.3)

(Recall here the definition of θ, given immediately after Proposition 2.3)

where the morphisms are understood as composed with the projection onto their

image. The third differential of the triple complex, i.e. the map from BCp,q,r →

BCp,q,r+1 is taken to be 0. This is supposed to reflect the fact that the cyclic homology

of DX∗ splits as a direct sum of Hochschild homologies of DX∗ . In general one would

expect only a filtration on the cyclic homology, determined by the Hochschild to Cyclic

spectral sequence. The monodromy on the complex ψ∗∗ extends to a monodromy

operator on BC∗∗∗ defined as

N : BCp,q,r −→ BCp+1,q−1,r N(u[t] ⊗ ω) = u[t−1] ⊗ ω (3.3.4)

For any fixed p ∈ Z, the bicomplex BCp,∗,∗ may be described explicitly as in the

diagram (3.3.5).

While dealing with Hochschild homology of DX∗ in Section 3.2, we filtered the

complex ψp,q(C) by its columns fixing the value of p. We will now deal with one

“column” of the triple complex BCp,q,r at a time, again by considering the terms in

BCp,q,r with a fixed value of p.

Theorem 3.10. (a) For each fixed p ∈ Z, the bicomplex BCp,∗,∗ computes the cyclic

homology of DX∗, i.e., there is a quasi-isomorphism of complexes:

Tot(CC∗(DX∗)) −→ Tot(BCp∗∗)[2n].
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r = −p :

BCp,−2p,−p︷ ︸︸ ︷
Cu0Ω0

X(log Y )
d′′−−−→ ...x0

r = −p− 1 :

BCp,−2p−1,−p−1︷ ︸︸ ︷
Cu1Ω0

X(log Y )
d′′−−−→ Cu1Ω1

X(log Y )
d′′−−−→ ...x0

x0

r = −p− 2 :

BCp,−2p−2,−p−2︷ ︸︸ ︷
Cu2Ω0

X(log Y )
d′′−−−→ Cu2Ω1

X(log Y )
d′′−−−→ Cu2Ω2

X(log Y )
d′′−−−→ ...

(3.3.5)

Figure 3: The bicomplex BCp,∗,∗

and hence a canonical isomorphism:

HCk(DX∗) ∼= H2n−k(Tot(BCp,∗,∗)) k ∈ N, n = dim(X∗) (3.3.6)

where the total complex Tot(BCp,∗,∗) is described by

Tot(BCp,∗,∗)l =
⊕

q+r=−p+l

BCp,q,r =
⊕

q+r=−p+l

Cu−p−rΩq+p−r
X (log Y ) (3.3.7)

(b) Using the isomorphism in (3.3.6), the monodromy N on the complex BCp,∗,∗ co-

incides with the periodicity operator S on the cyclic homology of DX∗, i.e.

N : H2n−k(Tot(BCp,∗,∗)) ∼= HCk(DX∗)
S−−−→ (3.3.8)

HCk−2(DX∗) ∼= H2n−k+2(Tot(BCp,∗,∗))

Proof. (a) Notice that each of the rows with d′′ differentials in the diagram for BCp∗∗

is simply the logarithmic de Rham complex (Ω∗X(log Y ), d′′) (upto a shift). We know

from before (see for instance, the proof of Proposition 3.8), that this logarithmic de

72



Rham complex computes the de Rham cohomology of X∗. Hence, if we take the total

complex Tot(BCp,∗,∗), it follows that

H2n−k(Tot(BCp,∗,∗)) ∼= H2n−k
DR (X∗)⊕H2n−k+2

DR (X∗)⊕ . . .

But, from Theorem A.3.17 in Appendix 1, we know that

HCk(DX∗) ∼= H2n−k
DR (X∗)⊕H2n−k+2

DR (X∗)⊕ . . . (3.3.9)

The isomorphism H2n−k(Tot(BCp,∗,∗)) ∼= HCk(DX∗) is canonical because, on the one

hand, the rows of BCp∗∗ with d′′-differentials are logarithmic de Rham complexes and

hence are canonically isomorphic to de Rham complex on X∗. Hence, we have a

quasi-isomorphism of complexes

Tot(BCp∗∗) =
∞⊕
k=0

Ω∗X(log Y )[2k]
q.i.−→

∞⊕
k=0

Ω∗X∗ [2k] (3.3.10)

It now follows from the proof of Theorem A.3.17 that the cyclic complex Tot(CC(DX∗))

is quasi-isomorphic to a shift of the right hand side of (3.3.10), i.e.

Tot(CC(DX∗))
q.i.−→

(
∞⊕
k=0

Ω∗X∗ [2k]

)
[2n]

q.i.−→ Tot(BCp∗∗)[2n] (n = dim(X∗))

(3.3.11)

(b) From the definition of the operator N , it follows that N(BCp,∗,∗) ∼= BCp,∗,∗[0, 1, 1].

Hence,

H2n−k(N(BCp,∗,∗)) = H2n−k+2(Tot(BCp,∗,∗)) (3.3.12)
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Therefore, the operator N coincides with the projection

H2n−k
DR (X∗)⊕H2n−k+2

DR ⊕H2n−k+4
DR (X∗) · · · → H2n−k+2

DR ⊕H2n−k+4
DR (X∗)

The operator S can be identified with the same projection, as we show in Corollary

A.3.18 in Appendix 1.

Theorem 3.11. Let BC∗ denote the total complex associated to the triple complex

BC∗∗∗. Let F ′k, k ∈ Z denote the filtration induced on the total complex BC∗ by

“columns” BCp∗∗, i.e.

F ′kBC∗ =

( ⊕
q+r=−p+∗,p≥−k

BCp,q,r, d′ + d′′ + d′′′

)
(3.3.13)

There is a converging spectral sequence in hypercohomology

E−p,2n+p−q
1 := H2n−q(F ′p/F

′
p−1)⇒ H2n−q(BC∗) (3.3.14)

The E1-terms are, moreover, canonically isomorphic to cyclic homologies of DX∗, i.e

HCq(DX∗) ∼= E−p,2n+p−q
1 (3.3.15)

Proof. For each fixed p ∈ Z, the bicomplexes BCp∗∗ form the graded pieces of a

“filtration by columns” on the triple complex BC∗∗∗. Hence, the complexes Tot(BCp∗∗)

form the graded pieces of a filtration on the total complex BC∗, i.e.

F ′p/F
′
p−1 = Tot(BCp∗∗) (3.3.16)

Further, this filtration is bounded below and exhaustive. From Theorem 3.10 above,
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we know that

HCk(DX∗) ∼= H2n−k(Tot(BCp,∗,∗)) k ∈ N (3.3.17)

From the spectral sequence associated to the filtration by Tot(BCp∗∗), p ∈ Z, we get

HCq(DX∗) = E−p,2n+p−q
1 ⇒ H2n−q(BC∗) (3.3.18)

Finally, we have

Proposition 3.12. We have the following commutative diagram of long exact se-

quences in which the vertical maps are isomorphisms.

...→ H2n−k(Ker(N)∗)
I−−−→ H2n−k(Tot(BCp∗∗)) N−−−→ H2n−k+2(Tot(BCp∗∗))→ ...

∼=
y ∼=

y ∼=
y

... −→ HHk(DX∗)
I−−−→ HCk(DX∗)

S−−−→ HCk−2(DX∗) −→ ...

Proof. The isomorphism H2n−k(Ker(N)∗) ∼= HHk(DX∗) was proved in Proposition

3.8 in Section 3.2 while the isomorphisms H2n−k(Tot(BCp∗∗)) ∼= HCk(DX∗) and

H2n−k+2(Tot(BCp∗∗)) ∼= HCk−2(DX∗) follow from Theorem 3.10(a) above. The mor-

phisms S and N have been identified in Theorem 3.10(b). The lower sequence in the

diagram above has been shown to be long exact in Corollary A.3.18 in Appendix 1.

This proves the result.

Appendix 1: Cyclic Homology of the Ring of Differential Operators

A manifold U is said to be Stein if the following conditions hold:
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(1) U is holomorphically convex, i.e., for every compact subset K of U , the holomor-

phic convex hull K of K:

K = {z ∈ U | |f(z)| ≤ sup
K

|f | ∀ f ∈ O(U)}

is a compact subset of U . Here O(U) denotes the ring of holomorphic functions on

U .

(2) U is holomorphically separated, i.e. given two points x 6= y in U , there exists a

holomorphic function f ∈ O(U) such that

f(x) 6= f(y)

(3) For every point x ∈ U , there exist holomorphic functions f1,...,fn in O(U) forming

a local coordinate system at x.

In fact, the key property of Stein manifolds is that if F is an analytic quasi-coherent

sheaf on a Stein manifold U , then H i(U,F) = 0 for all i > 0. In the GAGA set of

analogies of manifolds with algebraic varieties, Stein manifolds correspond to affine

varieties.

Let us denote by D(U) the ring of holomorphic differential operators on a Stein

manifold U . If (z1, z2, ..., zn) is a system of holomorphic local coordinates for U

(dimCU = n), then the ring D(U) consists of all finite sums of terms of the form

fI
∂

∂zi1

∂

∂zi2
. . .

∂

∂zik

where I = {i1 ≤ i2 ≤ ... ≤ ik} ⊆ {1, 2, ..., n} and fI ∈ O(U). Henceforth, we

shall implicitly assume that the spaces H∗dR(U), HH∗(D(U)) and HC∗(D(U)) are
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finite dimensional. The Hochschild and cyclic homologies of D(U) (considered as a

C-algebra), as determined in [46] (as also for the ring of differential operators on an

affine variety), are described as follows:

Proposition A. 3.13. (see [46, Theorem 3]) If U is a Stein manifold and dim(U) =

n, then

(1) HCq(D(U)) ' H2n−q
dR (U)⊕H2n−q+2

dR (U)⊕H2n−q+4
dR (U)⊕ ...

(2) HHq(D(U)) ' H2n−q
dR (U)

(3.3.19)

In particular, the analogous result holds for the ring of algebraic differential oper-

ators on an affine variety.

Proof. The ring D(U) has a natural filtration by order of the differential opera-

tor. The filtration gives us a spectral sequence Er
pq associated to the mixed complex

Tot(B∗∗(D(U))) that converges to HCp+q(D(U)). This spectral sequence Er
pq is a

priori located in the region p ≥ 0 and p+ q ≥ 0. Wodzicki[46] shows that the Er
pq = 0

(r ≥ 1) if either p ≥ 1 and q ≥ n or if p ≥ 1 and p+ q ≥ 2n. For p = 0, we get

E1
0q ' Hq

dR(U) (q ≥ n)

Since the columns of the mixed complex B∗∗(D(U)) compute the Hochschild homology

of D(U), we can use the spectral sequence associated to the filtration of B∗∗(D(U))

by columns to reduce the proof of statement (1) to the proof of (2) above. The terms

E1
0q show that

dimHCq(D(U)) ≤
[q/2]∑
i=0

HHq−2i(D(U))

for q ≥ 2n− 1 whence it follows from [46, Lemma 6] that the long exact periodicity
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sequence splits into short exact sequences

0 −−−→ HHq(D(U))
I−−−→ HCq(D(U))

S−−−→ HCq−2(D(U)) −−−→ 0

Finally, if ′Er
pq denotes the spectral sequence associated to the filtration on the

Hochschild complex of D(U), ′Er
pq degenerates at the E2-term, i.e. ′E2

pq = 0 un-

less q = n and the differential ′d1
pq corresponds to the de Rham differential. Then,

HHk(D(U)) ' ′E2
k−n,n = H2n−k

dR (U)

In Proposition A.3.13 above, the ring D(U) is considered as a topological algebra.

Therefore, in the complexes defining the Hochschild and cyclic homologies of D(U), it

should be understood that the tensor product ⊗C has been replaced by the projective

topological tensor product ⊗̂π,C.

The isomorphism in Proposition A.3.13 above is canonical and functorial with

respect to embeddings of codimension zero, i.e. with respect to embeddings of the

form U ↪→ V with dim(U) = dim(V ) (since the expressions H2n−q
dR (U) involve the

dimension n of the manifold U , the isomorphism HHq(D(U)) ≈ H2n−q
dR (U) cannot

be functorial with respect to an embedding U ↪→ V , unless U and V have the same

dimension).

In the notation of Section 3.1, we have a proper morphism f : X → D, X being an

algebraic variety and D being the open unit disc. If Y = f−1({0}) is the (closed) fibre

over over {0}, we have set X∗ = X − Y . Since X∗ is open in X, any x ∈ X∗ has a

fundamental system of neighbourhoods that are Stein. We can therefore form a basis

of X∗, say {Ui}i∈I , such that each Ui is Stein. Since all open sets Ui and their finite
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intersections have the same topological dimension and are also Stein open sets, the

functoriality of the isomorphisms HHq(D(U),D(U)) ' H2n−q
dR (U) can be employed

to obtain an isomorphism in hypercohomology.

The following lemma will be useful both in this as well as in later chapters. If F

and G are two sheaves on a manifold W , we know that, in general, isomorphisms ϕU :

F(U)→ G(U) on the open sets U ⊆ W do not imply the existence of an isomorphism

(or even a morphism) of sheaves ϕ : F → G. However, if the isomorphisms ϕU are

functorial, in a way to be made precise in the following lemma, this is true.

Lemma A. 3.14. (a) Let F and G be two separated presheaves (of sets or abelian

groups) on a topological space W , such that W has a basis consisting of open sets

{Uα}α∈A and there exist isomorphisms (of sets, or abelian groups resp.)

ϕα : F(Uα) −→ G(Uα)

which are (contravariantly) functorial with respect to inclusions of the open sets Uα,

α ∈ A. Then, there exists an isomorphism ϕ : F̃ → G̃ of their sheafifications.

(b) Let F and G be two presheaves (of sets or abelian groups) on a topological

space W , such that W has a basis consisting of open sets {Uα}α∈A and there exist

isomorphisms (of sets, or abelian groups resp.)

ϕα : F(Uα) −→ G(Uα)

which are (contravariantly) functorial with respect to inclusions of the open sets Uα,

α ∈ A. Then, there exist morphisms

ϕsα : F s(Uα) −→ Gs(Uα)
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which are contravariantly functorial with respect to inclusions of open sets Uα, α ∈ A,

where F s and Gs refer to the separated presheaves associated to F and G respectively.

Proof. (a) Choose an open set U ⊆ W such that F̃(U) 6= φ and consider s ∈ F̃(U).

There exists a collection of open sets {Ui}i∈I covering U such that I ⊆ A, i.e. the

Ui are elements of the basis and s ∈ F̃(U) corresponds to sections si ∈ F(Ui) of

s ∈ F(U) and their images ti = ϕi(si) ∈ G(Ui).

For any two i, j ∈ I, consider a collection of basis open sets {Vijβ}β∈Bij covering

Ui ∩Uj. Denote by sij (resp. sijβ) the restriction of si to Ui ∩Uj (resp. to each Vijβ).

Denote by tij and t′ij (resp. tijβ and t′ijβ) the restriction of ti and tj to Ui ∩ Uj (resp.

Vijβ) respectively. The morphisms ϕα are functorial with respect to inclusions of the

sets of the basis. From the inclusion Vijβ ↪→ Ui, we get ϕijβ(sijβ) = tijβ and from the

inclusion Vijβ ↪→ Uj, we get ϕijβ(sijβ) = t′ijβ.

Let iG,W ′ : G(W ′)→ G̃(W ′) be the morphism of presheaves due to sheafification of

G on an open set W ′ ⊆ W . Since tijβ = t′ijβ, it follows that,

iG,Uij(tij)|Vijβ = iG,Vijβ(tijβ) = iG,Vijβ(t′ijβ) = iG,Uij(t
′
ij)|Vijβ

and hence it follows that

iG,Ui(ti)|Uij = iG,Uij(tij) = iG,Uij(t
′
ij) = iG,Uj(tj)|Uij

From this it follows that the collection iG,Ui(ti) ∈ G̃(Ui) gives a well defined element

t ∈ G̃(U). We define ϕU(s) = t ∈ G̃(U). It is clear that ϕ is an isomorphism.

Finally, suppose that F̃(U) = φ. If G̃(U) = φ as well, there is nothing to prove.

However, if G(U) 6= φ, we can find sections tα ∈ G(Uα), Uα being open sets of

the basis; such that, for any α, β ∈ A with Uα, Uβ ⊆ U , tα and tβ have the same
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restriction to a collection of basis open sets covering the intersection Uα ∩ Uβ. Then,

using the isomorphisms ϕ−1
α : G(Uα) −→ F(Uα) and their functoriality with respect

to inclusions of basis open sets, we can obtain sections sα ∈ F(Uα) such that, for

any α, β ∈ A with Uα, Uβ ⊆ U , sα and sβ have the same restriction to a collection of

basis open sets covering the intersection Uα ∩ Uβ. The sections sα can now be glued

together to give a section s ∈ F̃(U) and hence F̃(U) 6= φ.

Of course, if F and G are presheaves of abelian groups (as they will be in all our

applications), the identity 0 is always a section over any open set and hence F̃(U) 6= φ

for all U .

(b) Take any open set Uβ with β ∈ A. Suppose that s and t are two sections of F(Uβ)

that are identified in F s(Uβ). Then, since {Uα}α∈A is a basis for W , there exists a

cover {Ui}i∈I⊆A of Uβ such that s|Ui = t|Ui for each i ∈ I. Consider the sections

ϕβ(s), ϕβ(t) ∈ G(Uβ). We have commutative diagrams

F(Uβ)
ϕβ−−−→ G(Uβ)

res

y res

y
F(Ui)

ϕi−−−→ G(Ui)

(3.3.20)

for each i ∈ I, whence it follows that ϕβ(s)|Ui = ϕβ(t)|Ui for each i ∈ I. Hence, ϕβ(s)

and ϕβ(t) coincide in Gs(Uβ). Hence, the morphisms ϕα : F(Uα) −→ G(Uα) for all α ∈

A descend to morphisms ϕsα : F s(Uα) −→ Gs(Uα). That the ϕsα are contravariantly

functorial with respect to inclusions of open sets in {Uα}α∈A is clear.

Corollary A. 3.15. Let F and G be two presheaves (of sets or abelian groups) on

a topological space W , such that W has a basis consisting of open sets {Uα}α∈A and
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there exist isomorphisms (of sets, or abelian groups resp.)

ϕα : F(Uα) −→ G(Uα)

which are (contravariantly) functorial with respect to inclusions of the open sets Uα,

α ∈ A. Then, there exists an isomorphism ϕ : F̃ → G̃ of their sheafifications.

Proof. This is clear from Lemma A.3.14 above.

Denote by DX∗ the sheaf of differential operators on X∗, i.e. DX∗ is the sheaf

associated to the presheaf U 7→ D(U) for every open set U ⊆ X∗.

Definition A. 3.16. Let Ch
∗ (DX∗) and B∗∗(DX∗) denote the sheafification of the

complexes defining the Hochschild and cyclic homologies of D(U) (for each open U ⊆

X∗) resp. The Hochschild and cyclic homology of DX∗ are defined to be the respective

hypercohomlogies, i.e

HH∗(DX∗) = H−∗(Ch
∗ (DX∗)) HC∗(DX∗) = H−∗(Tot(B∗∗(DX∗)))

Once again, we recall here that the complexes Ch
∗ (DX∗) and Tot(B∗∗(DX∗)) are

unbounded below and therefore the hypercohomology groups are defined as in Weibel

[42].

Theorem A. 3.17. Let X∗ be a locally Stein complex manifold and let DX∗ be the

sheaf of differential operators on X∗. Then, there are isomorphisms

(1) HCq(DX∗) ' H2n−q
dR (X∗)⊕H2n−q+2

dR (X∗)⊕H2n−q+4
dR (X∗)⊕ ...

(2) HHq(DX∗) ' H2n−q
dR (X∗)
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Proof. Let HH∗(DX∗) and HC∗(DX∗) denote the respective total homology sheaves

associated to the complexes Ch
∗ (DX∗) and B∗∗(DX∗) as defined in Definition A.3.16.

For each open set V ⊆ X∗, the de Rham complex is the hypercohomology of the

complex of sheaves with de Rham differential:

0 −→ Ω0
V −→ Ω1

V −→ ...

where Ωi
V denotes as usual the sheaf of holomorphic differential forms of degree i on

V . When V is Stein, the sheaves Ωi
V are coherent and the higher cohomologies vanish

and hence the hypercohomology can be calculated by taking the homology of the

complex of global sections. Let H∗ denote the cohomology presheaf of the complex

of sheaves

0→ Ω0
X∗ → Ω1

X∗ → . . .

and let H∗ denote the cohomology sheaf associated to H∗.

Consider the basis {Ui}i∈I of X∗ such that each Ui is Stein. Then, using the func-

toriality of the isomorphisms in Proposition A.3.13 (for embeddings of codimension

0), we deduce the existence of isomorphisms fi

fi : HHq(D(Ui))
∼−→ H2n−q(Ui)

Since the intersections of Stein manifolds are Stein, the morphisms fi also satisfy

fi|Ui∩Uj = fj|Ui∩Uj . Since the Stein open sets form a basis, by applying Lemma

A.3.14 we obtain an isomorphism of sheaves

HHq(DX∗)
∼−→ H2n−q
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We conclude, using the hypercohomology spectral sequence for the Hochschild ho-

mology, that

Epq
2 = Hp(X∗,HHq)⇒ HHq−p(DX∗)

For the de Rham complex, we use the hypercohomology spectral sequence to conclude

Hp(X∗,HHq)
∼−→ Hp(X∗,H2n−q) = Ep,2n−q

2 ⇒ Hp+2n−q
dR (X∗)

By applying the Poincaré lemma, we deduce that the sheaf H2n−q is non zero only

when q = 2n and hence HHq is non zero only when q = 2n as well. Hence both

spectral sequences are degenerate and we obtain isomorphisms

Hp(X∗,HH2n)
∼−→ HH2n−p(DX∗) Hp(X∗,H0)

∼→ Hp
dR(X∗)

and hence we have

HH2n−p(DX∗)
∼−→ Hp

dR(X∗)

This proves (2).

To prove (1), we proceed as follows: We recall the bicomplex CC(D(U)) that

defines cyclic homology from Definition 1.1 for each open set U in X∗. The odd num-

bered columns of CC(D(U)), i.e. those with “b′-differentials” are chain homotopic

to 0. The even numbered columns of CC(D(U)), i.e., those with “b-differentials”

compute the Hochschild homology of D(U).

From [6] and [7] we know that the Hochschild complex of the sheaf of differential

operators DX∗ is quasi-isomorphic to C[2n] (the constant sheaf C shifted 2n-places,

where n = dim(U)). Since the periodicity operator is defined by dropping the first

two columns of CC(D(U)), i.e. one b-column (computing Hochschild homology) and
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one b′-column (which is chain homotopic to 0), it follows that (the total complex of)

the sheafification of CC(D(U)) is quasi-isomorphic to

C[2n]⊕ C[2n+ 2]⊕ ...

and that the periodicity operator acts by dropping the first summand C[2n]. Hence,

we have the isomorphism of hypercohomologies

HCq(DX∗) ' H2n−q
dR (X∗)⊕H2n−q+2

dR (X∗)⊕H2n−q+4
dR (X∗)⊕ ...

Corollary A. 3.18. There exists a long exact sequence

· · · → HHq(DX∗)→ HCq(DX∗)
S→ HCq−2(DX∗)→ . . .

The periodicity operator

S : HCq(DX∗) −→ HCq−2(DX∗)

acts by dropping the summand HHq(DX∗) ∼= H2n−q
DR (X).

Proof. We have the short exact sequence of complexes of sheaves

0→ Ch∗ (DX∗)→ Tot(B∗∗(DX∗))→ Tot(B∗∗(DX∗))[2]→ 0

The long exact periodicity sequence now follows from the fact that hypercohomology

is a hyperderived functor. The last statement follows from the proof of Proposition

A.3.17 in which we showed that the sheafification of the double complex CC(D(U))
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is quasi-isomorphic to C[2n] ⊕ C[2n + 2] ⊕ ... and that the periodicity operator acts

by dropping the first summand C[2n].
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4 Consani’s complex and the Cyclic Cohomology

of the ring of differential operators

—————————————————————————————————————

The formalism of nearby cycles associated to an algebraic degeneration over a disc

can be extended to the case of the reduced and irreducible fibre at infinity of an arith-

metic variety. In 2.3, we described a complex Ki,j,k that is used to make explicit the

E1-terms of the spectral sequence associated to the L-filtration on Steenbrink’s com-

plex that converges to the cohomology of the universal fibre X̃∗. We also described

an endomorphism N : Ki,j,k → Ki+2,j,k+1. Thereafter, in Chapter 3, we considered a

resolution ψ∗∗(C) of the nearby cycles complex (which is quasi-isomorphic to Steen-

brink’s complex); we identified the homology of the graded pieces of filtration induced

on the former by the kernel of N j, j ≥ 0 with the Hochschild homology of the sheaf of

differential operators on X∗ and finally showed that, the endomorphism N induced on

the cohomology can be identified with the periodicity operator S in cyclic homology.

Consani, in her PhD. thesis (see [18],[19]), introduced a complex Ki,j,k, again with

monodromy N that is the “archimedean” analogue of the Steenbrink complex at

archimedean infinity. In this new setup, the complex (or real) points of an arith-

metic variety over a number field play the role of the nearby fibre over infinity. The

complex points of the nearby fibre at infinity form a smooth complex manifold X(C)

of dimension, say n over C. The manifold X(C) may also be extended from R, i.e.

there exists a real manifold of dimension n X(R) such that X(C) = X(R)⊗R C. The

images of N j, j ≥ 0 are direct summands of K∗ = ⊕i+j=∗Ki,j, with Ki,j = ⊕kKi,j,k.
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In this chapter, we show that the homology of the graded pieces of the filtration

defined by them correspond naturally to Hochschild cohomology of the ring of differ-

ential operators D(X) on X. Thereafter, we construct a complex that computes the

cyclic cohomology of D(X). This complex is, in fact, a deck of Hochschild complexes.

Thereafter, we show that the endomorphism N on the hypercohomology corresponds

to the periodicity operator S in cyclic cohomology.

We understand this “interchange” of roles between the framework of cyclic homol-

ogy and that of cyclic cohomology between the two chapters as a natural consequence

of the fact that that the Ki,j,k’s appearing in Consani’s complex are an analogue of

the graded pieces of the L-filtration on Steenbrink’s complex A∗, which appears as

the target of the quasi-isomorphism µ : ψ∗(C) −→ A∗ in Proposition 3.6. Then, the

interchange between the kernel and the cokernel of N appearing on ψ∗(C) and N ap-

pearing on A∗ which was already made explicit in Corollary 3.7, will be understood as

an interchange between cyclic homology and cyclic cohomology. Therefore, in section

4 of this chapter, we will construct a complex ϕ∗∗ which is the analogue of the nearby

cycles complex ψ∗∗ at archimedian infinity. Correspondingly, we will assemble the

graded pieces Ki,j,k to form a complex B∗∗ which replaces the Steenbrink complex

A∗∗ of Proposition 3.6 and also a morphism of complexes µ : ϕ∗ → B∗. Both The

complexes ϕ and B∗∗ are equipped with an endomorphism N , and, as in Proposition

3.6, µ ◦N is chain homotopic to the operator N ◦ µ.

4.1 Consani’s complex

Let X be a smooth compact manifold of dimension m over C or R. If X is defined

over R, then we let X(C) denote the complex manifold X(C) = X ⊗R C. Then, in

either case, dimC(X(C)) = m and, by abuse of notation, we will continue to refer to
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X(C) simply as X, whenever X is defined over R. We let ΩM
R denote the module

of real differentials on X, i.e. the direct sum
⊕

a+b=M(Ωa,b + Ωb,a)R. We denote the

direct sums (Ωa,b
X + Ωb,a

X )R by Ωa,b
X,R. We have the following setup (see [18, Section 4]):

For all i, j, k ∈ Z, we define

Ki,j,k =


⊕
a≤b

a+b=j+m,|a−b|≤2k−i

Ωa,b
X,R
(
m+j−i

2

)
k ≥ max{0, i}

0 otherwise

(4.1.1)

where the term Ωa,b
X,R(r) refers to real differentials of type (a, b) multiplied by a factor

of (2πi)r. We refer to the number r in Ωa,b
X,R(r) as the (Tate)twist of the real differential

forms.

We will now define the maps d′, d′′ and N as follows. Denote by ∂ and ∂ the usual

partial differential operators on Ωa,b
X,R. We define

d′ : Ki,j,k → Ki+1,j+1,k+1 d′ = ∂ + ∂

d′′ : Ki,j,k → Ki+1,j+1,k d′′ = i(∂ − ∂)

N : Ki,j,k → Ki+2,j,k+1 N(a) = (2πi)−1a

(4.1.2)

We remark that d′′ is be considered as composed with a projection onto its range.

We will also maintain

d = d′ + d′′ (4.1.3)

For i, j ∈ Z, write Ki,j =
⊕

k∈ZK
i,j,k. We will consider the bicomplex (K ··, d′, d′′)

and the associated total complex K∗ =
⊕

i+j=∗K
i,j. It is easy to check that [d′, N ] =

[d′′, N ] = 0. Therefore, we can form bicomplexesKer(N)∗∗, Coker(N)∗∗ and Cone(N)∗∗.

Following the definition given in Section 2.4, the complex Cone(N) = K∗ ⊕K∗[−1]

endowed with the differential D(a, b) = (da,Na − db). Following [18], we introduce
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(for q ≥ 0):

grW2pH
q(X̃∗) =

Ker(d : Kq−2p,q−n → Kq−2p+1,q−m+1)

Im(d : Kq−2p−1,q−m−1 → Kq−2p,q−m)

grW2pH
q(Y ) =

Ker(d : Ker(N)q−2p,q−m → Ker(N)q−2p+1,q−m+1)

Im(d : Ker(N)q−2p−1,q−m−1 → Ker(N)q−2p,q−m)

grW2pH
q
Y (X) =

Ker(d : Coker(N)q−2p,q−m → Coker(N)q−2p+1,q−m+1)

Im(d : Coker(N)q−2p−1,q−m−1 → Coker(N)q−2p,q−m)

grW2pH
q(X∗) =

Ker(d : Cone(N)q−2p,q−m → Cone(N)q−2p+1,q−m+1)

Im(d : Cone(N)q−2p−1,q−m−1 → Cone(N)q−2p,q−m)
(4.1.4)

Following, [16, Section 2.3], we define Hq(X̃∗) = Hq(K ·), Hq(Y ) = Hq(Ker(N).),

Hq
Y (X) = Hq(Coker(N).) and Hq(X∗) = Hq(Cone(N).). Clearly, we have the de-

compositions

Hq(X̃∗) =
⊕

p∈Z gr
W
2pH

q(X̃∗) Hq(Y ) =
⊕

p∈Z gr
W
2pH

q(Y )

Hq
Y (X) =

⊕
p∈Z gr

W
2pH

q
Y (X) Hq(X∗) =

⊕
p∈Z gr

W
2pH

q(X∗)
(4.1.5)

We also recall the following exact sequences (see [16, Corollary 2.13]):

q ≥ 2p :

0 // grW2pH
q(X∗) // grW2pH

q(X̃∗)
N // grW2(p−1)H

q(X̃∗) // 0

q ≤ 2(p− 1) :

0 // grW2pH
q(X̃∗)

N // grW2(p−1)H
q(X̃∗) // grW2pH

q(X∗) // 0

(4.1.6)

Following Remark 2.14 of [16], we note that the short exact sequence for q ≥ 2p, is

actually split exact.
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4.2 The de Rham complex and the Ring of differential oper-

ators

Given X as above, we can consider X as a smooth compact C-manifold Xan of

dimension n, which we shall continue to denote by X. Let D(X) denote the ring of

C∞ differential operators on X. We have the following result of Wodzicki [46].

Proposition 4.1. If X is a compact complex manifold of dimension n, the cyclic

homology of the ring D(X) of C∞-differential operators on X decomposes canonically

as:

HCq(D(X)) ' H2n−q
dR (X)

⊕
H2n−q+2
dR (X)

⊕
H2n−q+4
dR (X)

⊕
... (4.2.1)

The Hochschild homology of D(X) is given by

HHq(D(X),D(X)) ' H2n−q
dR (X) (4.2.2)

Moreover, the isomorphisms are functorial with respect to embeddings of codimension

zero.

Now, suppose that (C ., d1) and (D., d2) are two complexes of C-modules and let

f : C . → D. be a morphism of complexes (of degree 0). We assume that each of the

modules C . and D. is provided with a natural conjugation (denoted x 7→ xc for x

belonging to any Cn or Dm) compatible with complex conjugation, i.e. (αx)c = ᾱxc

for any α ∈ C and x belonging to any Cm or Dn and let C .
R and D.

R denote the

R-submodule of C . and D. resp. of elements fixed under this conjugation.

Assume that the differentials di, i = 1, 2 commute with the conjugation and so do
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the maps fi, i ∈ Z of the morphism f : C . → D.. This means we have the equalities:

di(x
c) = di(x)c fi(x

c) = fi(x)c (4.2.3)

Then, we have two new complexes (C .
R, d1) and (D.

R, d2) and an induced morphism

connecting them, which we also denote by f : (C .
R, d1) → (D.

R, d2). Finally, we set

H∗(C .
R) = H∗(C .

R, d1) and similarly for (D.
R, d2).

Lemma 4.2. (1) If f∗ : H∗(C .) → H∗(D.) is a monomorphism, then so is f∗ :

H∗(C .
R)→ H∗(D.

R).

(2) If each f∗ : H∗(C .) → H∗(D.) is an epimorphism, then so is f∗ : H∗(C .
R) →

H∗(D.
R).

Proof. (1) Let z1 ∈ Cn
R be a cycle such that fn(z1) = 0 in H∗(D.

R). As such, there

exists y2 ∈ Dn−1
R such that d2(y2) = fn(z1). Since fn : Hn(C .) → Hn(D.) is a

monomorphism, there exists y1 ∈ Cn−1 such that d1(y1) = z1. Then, d1((y1+yc1)/2) =

z1 and hence z1 is a boundary in Cn
R.

(2) Choose a cycle z2 ∈ Dn
R. Since fn : Hn(C .) → Hn(D.) is an epimorphism, there

exists a cycle z1 ∈ Cn and a boundary b2 ∈ Dn such that fn(z1) + b2 = z2. Hence,

fn((z1 + zc1)/2) + (b2 + bc2)/2 = z2 and the class of (z1 + zc1)/2 in Hn(C .
R) maps to the

class of z2 in Hn(D.
R).

Lemma 4.3. Let (E., d1) be an exact sequence of C-modules where each module Em,

m ∈ Z is equipped with a conjugation x 7→ xc compatible with the complex conjugation

and with the differential d1, i.e. d1(xc) = (d1(x))c. Then, the sequence (E.
R, d1), where

d1 denotes the induced differential, is also exact.
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Proof. This fact may be checked directly as in the proof of the lemma above. Alter-

natively, the follows from the fact that the sequence (E., d1) is exact if and only if it

is quasi-isomorphic to the zero complex. Then, applying Lemma 4.2, it follows that

the complex (E.
R, d1) is also quasi-isomorphic to zero.

Lemma 4.4. Let (C ., d1) be a complex of C-modules where each module Cm, m ∈ Z

is equipped with a conjugation x 7→ xc compatible with the complex conjugation and

with the differential d1, (i.e. d1(xc) = (d1(x))c). Then, the homology groups H∗(C .)

carry a conjugation compatible with complex conjugation. Let H∗(C .)R denote the

submodule of H∗(C .) invariant under this conjugation. Then:

H∗(C .
R) ≈ H∗(C .)R. (4.2.4)

Proof. Let dm1 : Cm → Cm+1, (m ∈ Z) be the differential. If z ∈ Cm is such that

dm1 (z) = 0, we define the conjugate of its class in homology by

(z + Im(dm−1
1 ))c = zc + Im(dm−1

1 )

This class is well defined since dm−1
1 is compatible with the conjugation z 7→ zc. Let

w ∈ Cm
R (hence w = wc) be such that dm1 (w) = 0. Then define the homomorphism:

φm : Hm(C .
R) −→ Hm(C .)R φm(w + Im(dm−1

1 )) = w + Im(dm−1
1 ) ∈ Hm(C .)R

(4.2.5)

Suppose that φm(w + Im(dm−1
1 )) = 0. Then w = dm−1

1 (x) for some x ∈ Cm−1.

But then w = wc = dm−1
1 (xc) and hence w = dm−1

1 ((x + xc)/2). However, since
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(x+ xc)/2 ∈ Cm−1
R we obtain w + Im(dm−1

1 ) = 0 in Hm(C .
R). This proves that φm is

one one.

We now choose z + Im(dm−1
1 ) ∈ Hm(C .)R such that (z + Im(dm−1

1 ))c = z +

Im(dm−1
1 ). Then, there exists x ∈ Cm−1 such that z − zc = dm−1

1 (x). Consider

w = z − dm−1
1 (x/2) = z − (z − zc)/2 = (z + zc)/2. Hence wc = w and it is clear that

φm(w + Im(dm−1
1 )) = z + Im(dm−1

1 ). This proves that φm is also onto and hence an

isomorphism.

The above formalism applies to the complexes defining the cyclic homologyHC∗(D(X))

of the ring D(X) of C∞-differential operators on X and the de Rham cohomology of

X. We shall denote the homologies of the subcomplexes fixed under conjugation by

HC∗(D(X))R and H∗dR(X)R respectively. We shall refer to HC∗(D(X))R as the real

cyclic homology of D(X), while we shall refer to H∗dR(X)R as the real de Rham co-

homology. By defining a similar conjugation on the complex defining the Hochschild

homology of D(X), we can define the real Hochschild homology of D(X), which we

will denote by HH∗(D(X))R.

Note moreover, that, if M is a C-module equipped with a complex conjugation m 7→

mc for all m ∈ M , compatible with complex conjugation, there is a conjugation

f 7→ f c for f ∈ Hom(M,C) which is

f c(m) = f(mc) m ∈M, f ∈ Hom(M,C) (4.2.6)

It is easy to check that

f c(αm) = f((αm)c) = f(ᾱmc) = αf(mc) = αf c(m) α ∈ C (4.2.7)
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In particular, we will apply this to the modules Hom(HCq(D(X),C).

Proposition 4.5. If X has dimension n, we have canonical isomorphisms of C-vector

spaces:

HCq(D(X))R ' H2n−q
dR (X)R

⊕
H2n−q+2
dR (X)R

⊕
H2n−q+4
dR (X)R

⊕
... (4.2.8)

HHq(D(X),D(X))R ' H2n−q
dR (X)R (4.2.9)

Proof. From Proposition 4.1, we have canonical isomorphisms:

HHq(D(X),D(X)) ' H2n−q
dR (X) (4.2.10)

The groups HHq(D(X)) are obtained from the Hochschild complex of the ring

D(X) and this complex carries a natural conjugation. The complex that com-

putes de Rham cohomology also carries a natural conjugation and the map be-

tween the Hochschild complex and the de rham complex is compatible with this

conjugation. Hence from the lemmae above, and the canonical and functorial iso-

morphisms HHq(D(X)) ≈ H2n−q
dR (X), we have an isomorphism of their invariants

HHq(D(X),D(X))R ' H2n−q
dR (X)R. This proves the second isomorphism in the

proposition.

Again, for cyclic homology, from Proposition 4.1, we have the canonical isomor-

phism

HCq(D(X)) ' H2n−q
dR (X)

⊕
H2n−q+2
dR (X)

⊕
H2n−q+4
dR (X)

⊕
... (4.2.11)

The bicomplex CC(D(X)) that is used to compute cyclic homology also carries a nat-

ural conjugation, which is compatible with the conjugation on the de Rham complex.
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Hence, we have the isomorphism

HCq(D(X))R ' H2n−q
dR (X)R

⊕
H2n−q+2
dR (X)R

⊕
H2n−q+4
dR (X)R

⊕
... (4.2.12)

We now consider the cohomological viewpoint. Given an algebra A over a commu-

tative ring k, recall from Section 1.1 that there exists a Kronecker product pairing

between Hochschild homology and cohomology

< ., . >: HHq(A)×HHq(A) −→ A∗ ⊗Ae A −→ k (4.2.13)

where Ae is the enveloping algebra A⊗kAop of A and A∗ = Hom(A, k). This product

can be extended to the cyclic theory and it induces a pairing (see [31, § 2.4.8])

< ., . >HC : HCq(A)×HCq(A) −→ k (4.2.14)

This means that one obtains a natural map

HCq(A)→ Hom(HCq(A), k) (4.2.15)

On the other hand, the Poincare duality isomorphism for the compact manifold X

gives us:

Hom(Hn−q
dR (X),C)

'−→ Hq
dR(X) ∀ q ≥ 0 (4.2.16)

Proposition 4.6. (a) There is a commutative diagram of long exact sequences
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→ HCq+n−2(D(X))
S−−−→ HCq+n(D(X))

I−−−→ HHq+n(D(X))→y y y
→ Hom(HCq+n−2(D(X)),C)

S−−−→ Hom(HCq+n(D(X)),C) −−−→ Hom(HHq+n(D(X)),C)→
∼=
y ∼=

y ∼=
y

→ Hq−2
dR (X)⊕Hq−4

dR (X)⊕ ... S−−−→ Hq
dR(X)⊕Hq−2

dR (X)⊕ ... −−−→ Hq
dR(X)→

(4.2.17)

(b) By conjugating and taking invariants, the vertical maps in the diagram above give

us morphisms:

HCq+n(D(X))R −→ Hq
dR(X)R ⊕Hq−2

dR (X)R ⊕ . . .

HHq+n(D(X))R −→ Hq
dR(X)R

(4.2.18)

Further, we have a long exact periodicity sequence

· · · → HCq+n−2(D(X))R
S−−−→ HCq+n(D(X))R

I−−−→ HHq+n(D(X))R → . . .

(4.2.19)

Proof. Since the pairing of HCq and HCq extends the pairing on Hochschild ho-

mology, the natural morphisms induced by the (not necessarily perfect) pairings:

HCq+n(D(X))→ Hom(HCq+n(D(X)),C) andHHq+n(D(X))→ Hom(HHq+n(D(X)),C)

commute with the maps in the periodicity sequence. The isomorphisms

Hom(HHq+n(D(X),C)
'−→ Hom(Hn−q

dR (X),C)
'−→ Hq

dR(X) (4.2.20)

follow from Poincare duality. This proves (a). For (b), we consider a sample of a
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vertical column in the diagram above:

HHq(D(X)) −→ Hom(HHq(D(X)),C) −→ Hq
dR(X)

All three homology modules HHq+n(D(X)), Hom(HHq+n(D(X)),C) and Hq
dR(X)

carry a natural conjugation we consider the sequence of induced maps between the

invariants:

HHq+n(D(X))c=id −→ Hom(HHq+n(D(X)),C)c=id −→ Hq
dR(X)c=id

By applying Lemma 4.4, it follows thatHHq(D(X))c=id ∼= HHq(D(X))R andHq
dR(X)c=id ∼=

Hq
dR(X)R. Therefore, we have morphisms

HHq+n(D(X))R −→ Hq
dR(X)R (4.2.21)

and so also for the other vertical columns. Finally, the fact that the complex

· · · → HCq+n−2(D(X))R
S−−−→ HCq+n(D(X))R

I−−−→ HHq+n(D(X))R → . . .

(4.2.22)

is exact follows from Lemma 4.3. This proves (b).

Remark: Note that if A is a C-algebra, the pairing

HCq(A)×HCq(A) −→ C (4.2.23)

is perfect only in a few special cases. For instance, if A is also a finite dimensional

vector space over C, the pairing is perfect.
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Lemma 4.7. For any given t ∈ Z and k ≥ 0 and j ∈ Z, the projection ptj,k : Ω
j+n/2
R →

Kj−t′,j,k induces a map of complexes (where t′ = 2t− n/2),

pt∗,k : (Ω
∗+n/2
R ,−dc)→ (K∗−t

′,∗,k, d′′) (4.2.24)

Proof. We note that if j − t′ ≥ k, then the target of ptj+1,k is always zero and there is

nothing to prove. Therefore, we may suppose that j − t′ < k. In order to check that

the projections ptj,k induce a map of complexes, it suffices to show that, for x 6= 0,

x ∈ Ω
j+n/2
R , if ptj,k(x) = 0, then ptj+1,k(d

c(x)) = 0. For sake of convenience, we can

assume that x lies in some (Ωa,b + Ωb,a)R where a+ b = j + n/2. Then, if ptj,k(x) = 0,

we must have |a − b| > 2k − i, where i = j − t′ = j − 2t + n/2. On the other

hand, if ptj+1,k(d
c(x)) 6= 0, it must follow that |a − b| − 1 ≤ 2k − i − 1, which is a

contradiction.

For each fixed value of the Tate twist t ∈ Z, we define the following bicomplex

(K∗∗t , d
′, d′′) as

Kp,q
t = Ru−q−1 ⊗Kp+q,p+q+t′,q p ≤ 0, q ≥ 0 (4.2.25)

where t′ = 2t− n/2. We introduce the differentials:

d′ : Kp,q
t → Kp,q+1

t d′(u[q+1] ⊗ (2πi)tω) = u[q+2] ⊗ (2πi)t(∂ + ∂̄)ω

d′′ : Kp,q
t → Kp+1,q

t d′′(u[q+1] ⊗ (2πi)tω) = u[q+1] ⊗ (2πi)ti(∂ − ∂̄)ω
(4.2.26)

The monodromy N acts on (K∗∗t , d
′, d′′) as follows:

N : Kpq
t −→ Kp+1,q+1

t−1 N(u[q+1] ⊗ (2πi)tω) = u[q+2] ⊗ (2πi)t−1ω (4.2.27)
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...
...

↑ ↑ d′ ↑
→ u−3K0,t′,2 d′′→ u−3K1,t′+1,2 d′′→ u−3K2,t′+2,2 = Im(N2)

↑ ↑ d′ ↑ = Im(N)

→ u−2K−1,t′−1,1 d′′→ u−2K0,t′,1 d′′→ u−2K1,t′+1,1

↑ ↑ d′ ↑
→ u−1K−2,t′−2,0 d′′→ u−1K−1,t′−1,0 d′′→ u−1K0,t′,0

(4.2.29)

Figure 4: The bicomplex K∗∗t

In fact, we shall also consider powers of N ; for any l ≥ 0, we have maps

N l+1 : K∗∗t+l+1 → K∗+l+1,∗+l+1
t

N l : K∗∗t+l → K∗+l,∗+lt

(4.2.28)

By convention, it is understood that N0 refers to the identity map.

For each fixed l ≥ 0, we consider the complexes Im(N l+1)∗ and Im(N l)∗ both of

which are subcomplexes of K∗∗t as well as the corresponding graded piece, i.e. the

quotient (Im(N l)/Im(N l+1))∗.

Proposition 4.8. For each fixed l ∈ Z≥0 and for each fixed value t ∈ Z of the Tate

twist, there are natural maps connecting the real Hochschild cohomology of D(X) to

the homology of the quotient complexes (Im(N l)/Im(N l+1))∗,

HHq+n(D(X))R −→ Hq−2t((Im(N l)/Im(N l+1))∗) (4.2.30)

Proof. We let t′ = 2t− n/2. Then, by definition, we have the map N :

N : Kpq
t+1 = Ru−q−1 ⊗Kp+q,p+q+t′+2,q → Ru−q−2 ⊗Kp+q+2,p+q+t′+2,q+1 = Kp+1,q+1

t

(4.2.31)
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N(u[q+1] ⊗ (2πi)tω) = u[q+2] ⊗ (2πi)t−1ω (4.2.32)

If Kp+q+2,p+q+t′+2,q+1 6= 0, then p + q + 2 ≤ q + 1 and hence p + q < q. Thus,

Kp+q,p+q+(t′+2),q 6= 0 is a preimage for Kp+q+2,p+q+t′+2,q+1, unless q+ 1 = 0. It follows

that the cokernel of N consists solely of the terms Kp,0
t = Ru−1 ⊗Kp,p+t′,0 whereas

the image of N consists of the terms Kpq
t with q > 0.

From these considerations, we deduce that the graded pieces Im(N l)/Im(N l+1),

(l ≥ 0) have the following description

(Im(N l)/Im(N l+1))∗ = K∗,lt (4.2.33)

By applying Lemma 4.7, we obtain morphisms

pt∗−n/2,l : (Ω∗R,−dc)→ (K∗−2t,∗−n/2,l, d′′) = (K∗−l−2t,l
t , d′′) (4.2.34)

By composing with the maps of Proposition 4.6, we get a morphism of homologies

HHq+n(D(X))R −−−→ Hq
dR(X)R

pt
q−n/2,l−−−−→

Hq−2t((Im(N l)/Im(N l+1))∗)

(4.2.35)
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4.3 The Connes periodicity operator and the monodromy

operator

We recall the definition of the bicomplexes (K ··t , d
′, d′′), t ∈ Z, which were introduced

in Section 4.2 in (4.2.25) as a modified version of Consani’s complex (K∗∗, d′ = ∂ +

∂̄, d′′ = i(∂ − ∂̄)). For any t ∈ Z and n = dim(X), we set

Kp,q
t = Ru−q−1 ⊗Kp+q,p+q+t′,q p ≤ 0, q ≥ 0 (4.3.1)

where t′ = 2t− n. The differentials on K∗∗t are described by the maps:

d′ : Kp,q
t → Kp,q+1

t d′(u[q+1] ⊗ ω) = u[q+2] ⊗ (2πi)t(∂ + ∂̄)ω

d′′ : Kp,q
t → Kp+1,q

t d′′(u[q+1] ⊗ ω) = u[q+1] ⊗ (2πi)ti(∂ − ∂̄)ω
(4.3.2)

The operator N on Kpq
t acts as follows:

N : Kp,q
t → Kp+1,q+1

t−1 N(u[q+1] ⊗ (2πi)tω) = u[q+2] ⊗ (2πi)t−1ω (4.3.3)

In Proposition 4.8, we have studied the relation between the homology of the graded

pieces Im(N l)/Im(N l+1)) and the Hochschild cohomology of the ring D(X). This

leads to the following two conclusions:

(1) The filtration on the complex K∗∗t by rows coincides with the filtration by the

images Im(N l), l ≥ 0.

(2) The spectral sequence associated to either of these filtrations converges to the

total homology of K∗∗t . The E1-terms of this spectral sequence are homologies of the

complexes Im(N l)/Im(N l+1). It follows from Proposition 4.8 that there exist natural

morphisms from the Hochschild cohomology of D(X) to the homology of the graded
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pieces.

We will now define a complex which carries a filtration with the property that the

cyclic homology of D(X) maps to the homology of its associated graded pieces. We

introduce the following complex ; for p, q, r ∈ Z let K∗∗∗ be

Kp,q,r = Ru[q+r+1] ⊗Kp+q+r,p+q−n−r,q+r p ≤ 0, q + r ≥ 0 (4.3.4)

with differentials (here the twist t = −r)

d′ : Kp,q,r → Kp,q+1,r d′(u[q+r+1])⊗ (2πi)tω) = u[q+r+2] ⊗ (2πi)t(∂ + ∂̄)ω

d′′ : Kp,q,r → Kp+1,q,r d′′(u[q+r+1] ⊗ (2πi)tω) = u[q+r+1] ⊗ (2πi)ti(∂ − ∂̄)ω

(4.3.5)

The third differentialKp,q,r → Kp,q,r+1 is taken to be zero. The operatorN is described

on this complex as

N : Kp,q,r → Kp+1,q,r+1 N(u[q+r+1] ⊗ (2πi)tω) = u[q+r+2] ⊗ (2πi)t−1ω (4.3.6)

Proposition 4.9. For each fixed q ∈ Z, there are natural maps from the cyclic

cohomology of the ring D(X) to the homology of the bicomplex K∗q∗

HCj+n(D(X))→ Hj(K∗q∗) j ≥ 0 (4.3.7)

which are induced by the projections of Lemma 4.7.

Proof. For a fixed q ∈ Z, we know from Lemma 4.7, that the complex K∗q∗ is a
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quotient of the following complex (where dc = i(∂̄ − ∂))

...
...x x

u−3Ω0
R

−dc−−−→ u−3Ω1
R

−dc−−−→ u−3Ω2
R −−−→ ...

0

x 0

x 0

x
u−2Ω0

R
−dc−−−→ u−2Ω1

R
−dc−−−→ u−2Ω2

R
−dc−−−→ u−2Ω3

R −−−→ ...

0

x 0

x 0

x 0

x
u−1Ω0

R
−dc−−−→ u−1Ω1

R
−dc−−−→ u−1Ω2

R
−dc−−−→ u−1Ω3

R
−dc−−−→ u−1Ω4

R −−−→ ...

(4.3.8)

The bicomplex Ω∗∗R [u−1]

where the projections p−1
∗∗ of Lemma 4.7 map the lowest row of Ω∗∗R [u−1] to the terms

K∗,q,−q (note that we impose r + q ≥ 0). For sake of convenience, we shall denote

this bicomplex by Ω∗∗R [u−1]. The j-th total homology of the bicomplex Ω∗∗R [u−1] is

therefore given by the direct sum

Hj(Ω∗∗R [u−1]) = Hj
dR(X)R ⊕Hj−2

dR (X)R ⊕ ... (4.3.9)

Hence we have the following composition of maps: we have maps

HCj+n(D(X)) −−−→ Hj
dR(X)R ⊕Hj−2

dR (X)R ⊕ ...→ Hj(K∗q∗) (4.3.10)

The first map in (4.3.10) comes from Proposition 4.6 while the second follows from

the fact that K∗q∗ is a quotient of Ω∗∗R [u−1].

In what follows, we shall continue to use Ω∗∗R [u−1] to denote the bicomplex of

(4.3.8).
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Proposition 4.10. For any q ∈ Z, the periodicity operator S appearing on the cyclic

cohomology of D(X) (see Proposition 4.5) can be identified with the monodromy oper-

ator N appearing on the complex K∗q∗, in other words, for any j ∈ Z and n = dim(X),

we have a commutative diagram

HCj+n−2(D(X))
S−−−→ HCj+n(D(X)) −−−→ HHj+n(D(X))y y y

Hj−2(K∗q∗) N−−−→ Hj(K∗q∗) −−−→ Hj(Coker(N)∗)

(4.3.11)

Proof. Consider the bicomplex Ω∗∗R [u−1] of (4.3.8). For sake of convenience, we intro-

duce a map Ñ on Ω∗∗R [u−1] that acts as

Ñ(u[q+1] ⊗ ω) = u[q+2] ⊗ ω (4.3.12)

Notice that Ñ lies above the monodromy operator N on K∗q∗, since the latter is a

quotient of Ω∗∗R [u−1]. Furthermore, we note that Ñ is injective on Ω∗∗R [u−1].

We therefore have a short exact sequence of bicomplexes

0 −−−→ Ω∗∗R [u−1][−1,−1]
Ñ−−−→ Ω∗∗R [u−1] −−−→ Coker(Ñ)∗ −−−→ 0 (4.3.13)

which gives rise to a long exact sequence of associated homologies

. . . −−−→ H l−2(Ω∗∗R [u−1])
Ñ−−−→ H l(Ω∗∗R [u−1]) −−−→ (4.3.14)

Hj(Coker(N)∗) −→ . . .

The isomorphisms in Proposition 4.5 are canonical and hence the periodicity operator
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on HCj+n(D(X)) acts by dropping the top summand as follows:

HCj+n(D(X)) −−−→ Hj
dR(X)⊕Hj−2

dR (X)⊕Hj−4
dR (X)⊕ ...

S

y p

y
HCj+n−2(D(X)) −−−→ Hj−2

dR (X)⊕Hj−4
dR (X)⊕ ...

(4.3.15)

where the horizontal arrows are the morphisms of Proposition 4.7. Combining (4.3.15)

with the fact thatK∗q∗ is a quotient of Ω∗∗R [u−1] and considering the mapsHCj+n(D(X))→

Hj(K∗q∗) described in Proposition 4.9, we have the commutative diagram

HCj+n−2(D(X))
S−−−→ HCj+n(D(X)) −−−→ HHj+n(D(X))y y y

Hj−2(K∗q∗) N−−−→ Hj(K∗q∗) −−−→ Hj(Coker(N)∗)

(4.3.16)

4.4 An analogue of the complex of nearby cycles at archimedean

infinity

In this section, our objective is to define a complex ϕ∗∗ endowed with an operator

N that is in direct analogy to the complex of nearby cycles ψ∗∗ of Section 3.1. Let

X be a compact manifold defined over C or R. Again, if X has total dimension n,

dimC(X(C)) = n/2.

The idea is as follows: in the notation of Section 2.3, we recall from (2.3.13) and

(2.3.16) the terms Ki,j,k
S defined by Steenbrink; For any i, j, k ∈ Z;
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LE
−r,q+r
1 = Hq(Y,GrLr A

·) =
⊕

k≥0,−rH
q−r−2k(Ỹ (r+2k+1),C)

Ki,j,k
S =

 H i+j−2k+n/2(Ỹ (2k−i+1),C) if k ≥ 0, i

0 otherwise

(4.4.1)

We have also seen that the Ki,j,k
S denote the homologies of the graded pieces of

the L-filtration on Steenbrink’s complex A∗∗. Proposition 3.6 states that there is a

quasi-isomorphism µ : ψ∗ −→ A∗.

This suggests that the terms Ki,j,k appearing in Consani’s complex (4.1.2) may be

assembled, in place of the terms Ki,j,k
S , to define a complex B∗∗ that plays the role,

at archimedean infinity, of Steenbrink complex A∗∗

Apq = Cu[p+1] ⊗ Ωp+q+1
X (log Y )/WpΩ

p+q+1
X (log Y ) p ≥ 0 (4.4.2)

Similarly, we will assemble the terms Ki,j,k to form a complex ϕ∗∗ that plays the role,

in this context, of the nearby cycles complex.

Both complexes ϕ∗∗ and B∗∗ are equipped with an operator N and we will show that

there exists a morphism µ : ϕ∗∗ → B∗∗ of bicomplexes which is compatible with N

upto homotopy, in other words, µ ◦N −N ◦ µ is homotopic to 0.

From (2.3.13) and (2.3.16), we know that the Ki,j,k
S are direct summands of the E1-

term of the spectral sequence associated to the Picard Lefschetz filtration (also called

the L-filtration in the previous chapter) on A∗∗. This spectral sequence converges to

the hypercohomology of A∗∗. Therefore, by considering appropriate direct sums of

the terms Ki,j,k, we shall construct a bicomplex B∗∗ that plays the role of A∗∗ in the

archimedean setup.

For easy comparison, we present the complexes ψ∗∗ and A∗∗ side by side in the
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following diagram. Notice that, along each row with d′-differentials, the terms on

the ψ∗∗ side differ from the terms on the A∗∗ side only in that the differentials of

weight “at most p” have been removed by considering the quotient Apq = Cu[p+1] ⊗

Ωp+q+1
X (log Y )/WpΩ

p+q+1
X (log Y ). Hence, the associated graded object GrW∗ ψ

∗∗ of A∗∗

is a direct summand of the associated graded object GrW∗ ψ
∗∗ of ψ∗∗.

ψ∗∗ µ A∗∗

x x
d′−−−−−→ u1Ω1

X(log Y )
d′−−−−−→ u0Ω2

X(log Y )

d′′
x d′′

x
u1Ω0

X(log Y )
d′−−−−−→ u0Ω1

X(log Y )

d′′
x

u0Ω0
X(log Y )

d′−−−−−→

−d′−−−−−→

d′−−−−−→

x x
u−1Ω3

X(log Y )/W0
d′−−−−−→ u−2Ω4

X(log Y )/W1

d′′
x d′′

x
u−1Ω2

X(log Y )/W0
d′−−−−−→ u−2Ω3

X(log Y )/W1

d′′
x d′′

x
u−1Ω1

X(log Y )/W0
d′−−−−−→ u−2Ω2

X(log Y )/W1

Table 4.1

The connecting map µ between the nearby cycles complex ψ∗∗ and Steenbrink’s com-

plex A∗∗ is simply the composite of the differential d′ with alternating signs with the

projection over the terms of weight > 0. If we apply the weight filtration to both

of these complexes and consider the associated graded objects, then, using the iso-

morphism from Poincaré lemma ((GrWk Ω∗X(log Y )
∼−→ Ω∗

Ỹ k
[−k]) as in the notation of

Chapter 3) we obtain
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ψ∗∗ µ A∗∗

x x
d′−−−−−→ Ω1

Ỹ 0 ⊕ Ω0
Ỹ 1

d′−−−−−→ Ω2
Ỹ 0 ⊕ Ω1

Ỹ 1 ⊕ Ω0
Ỹ 2

d′′
x d′′

x
Ω0
Ỹ 0

d′−−−−−→ Ω1
Ỹ 0 ⊕ Ω0

Ỹ 1

d′′
x

Ω0
Ỹ 0

d′−−−−−→

−d′−−−−−→

d′−−−−−→

x x
Ω2
Ỹ 1 ⊕ Ω1

Ỹ 2 ⊕ Ω0
Ỹ 3

d′−−−−−→ Ω2
Ỹ 2 ⊕ Ω1

Ỹ 3 ⊕ Ω0
Ỹ 4

d′′
x d′′

x
Ω1
Ỹ 1 ⊕ Ω0

Ỹ 2
d′−−−−−→ Ω1

Ỹ 2 ⊕ Ω0
Ỹ 3

d′′
x d′′

x
Ω0
Ỹ 1

d′−−−−−→ Ω0
Ỹ 2

Table 4.2

Table 4.2 shows clearly how the graded object associated to A∗∗ is constructed from

graded object associated to ψ∗∗ by the summands of top degree. We now incorporate

the same idea to define an object that plays the role of ψ∗∗ at archimedian infinity.

The definition of the K∗∗∗ is as in (4.1.2). Fix any initial i, j, k ∈ Z (the natural

choice would be i = 0, j = −n/2 and k = 0, where n is the total dimension of X).

We define, then, the bicomplex

ϕ(i, j, k)−p,q =



Ru[p] ⊗
q−p⊕
l=0

Ki+q−3p−2l,j+q−p,k−p (if q ≥ p ≥ 0)

= Ru[p] ⊗
q−p⊕
l=0

⊕
|a−b|≤2k−i+p−q+1,

a+b=j+q−p+n/2,a≤b

(Ωa,b + Ωb,a)R

(
n/2+j−i

2
+ p+ l

)
0 (otherwise)

(4.4.3)

For sake of convenience, we will denote the bicomplex ϕ(i, j, k)∗∗ by ϕ∗∗. Then ϕ−p,q

consists of sums of terms of the form u[p]⊗(2πi)tω, where (2πi)tω ∈ Ki+q−3p−2l,j+q−p,k−p,

0 ≤ l ≤ q − p (from which, by definition of Ki+q−3p−2l,j+q−p,k−p, it follows that

109



t =
(
n/2+j−i

2
+ p+ l

)
). On the bicomplex ϕ∗∗, we introduce the two differentials:

d′ : ϕ−p,q → ϕ−p+1,q d′(u[p] ⊗ (2πi)tω) = u[p−1] ⊗ (2πi)t(∂ + ∂̄)ω

d′′ : ϕ−p,q → ϕ−p,q+1 d′′(u[p] ⊗ (2πi)tω) = u[p] ⊗ (2πi)ti(∂ − ∂̄)ω
(4.4.4)

and the operator

N : ϕ−p,q → ϕ−p+1,q−1 N(u[p] ⊗ (2πi)tω) = u[p−1] ⊗ (2πi)t−1ω (4.4.5)

For the same fixed values i, j, k, we define the “Steenbrink Complex” B∗∗ as

B(i, j, k)pq =


Ru−p−1 ⊗

q⊕
l=0

Ki+p+q+1−2l,j+p+q+1,k+p+1 if p ≥ 0

0 otherwise

(4.4.6)

For sake of convenience, we will denote B(i, j, k)∗∗ simply by B∗∗. On the bicomplex

B∗∗ we introduce the differentials

d′ : Bpq → Bp+1,q d′(u[p+1] ⊗ (2πi)tω) = u[p+2] ⊗ (2πi)t(∂ + ∂̄)ω

d′′ : Bpq → Bp,q+1 d′′(u[p+1] ⊗ (2πi)tω) = u[p+1] ⊗ (2πi)ti(∂ − ∂̄)ω
(4.4.7)

and the operator

N : Bpq → Bp+1,q−1 N(u[p+1] ⊗ (2πi)tω) = u[p+2] ⊗ (2πi)t−1ω (4.4.8)
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To illustrate the analogy, compare the following tables with Table 4.2: (Compare

Table 4.3(1) to the left side of Table 4.2 and Table 4.3(2) to the right side of Table

4.2)

ϕ(i, j, k)∗∗

Ki−4,j,k−2

||
ϕ−2,2

d′−−−→ Ki−1,j+1,k−1 ⊕Ki−3,j+1,k−1 d′−−−→ Ki+2,j+2,k ⊕Ki,j+2,k ⊕Ki−2,j+2,k

d′′

x d′′

x
Ki−2,j,k−1

||
ϕ−1,1

d′−−−→ Ki+1,j+1,k ⊕Ki−1,j+1,k

d′′

x
Ki,j,k

||
ϕ0,0

Table 4.3(1)

B(i, j, k)∗∗

Ki+3,j+3,k+1 ⊕Ki+1,j+3,k+1 ⊕Ki−1,j+3,k+1 d′−−−→ Ki+4,j+4,k+2 ⊕Ki+2,j+4,k+2 ⊕Ki,j+4,k+2

d′′

x d′′

x
Ki+2,j+2,k+1 ⊕Ki,j+2,k+1 d′−−−→ Ki+3,j+3,k+2 ⊕Ki+1,j+3,k+2

d′′

x d′′

x
Ki+1,j+1,k+1

||
B0,0

d′−−−→ Ki+2,j+2,k+2

||
B1,0

Table 4.3(2)
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Proposition 4.11. Consider the morphism µ : ϕ∗ → B∗ defined as

µ(u[p] ⊗ (2πi)tω) =

 (−1)|ω|u[1] ⊗ (2πi)t(∂ + ∂̄)ω if p = 0

0 if p 6= 0
(4.4.9)

Then, the morphisms µ ◦ N and N ◦ µ are homotopic, by means of the homotopy

h : ϕ∗∗ → B∗∗ of bidegree (0,−1) defined by

h(u[p] ⊗ (2πi)tω) =

 0 if p 6= 0

(−1)|ω|u[1] ⊗ (2πi)t−1ω if p = 0
(4.4.10)

Proof. The following diagram describes the setup.

ϕ0,0 µ−−−→ B0,0 d′−−−→ B1,0 −−−→ . . .

d′′

y d′′

y d′′

y
ϕ−1,1 d′−−−→ ϕ0,1 µ−−−→ B0,1 d′−−−→ B1,1 −−−→ . . .

d′′

y d′′

y d′′

y d′′

y
ϕ−2,2 d′−−−→ ϕ−1,2 d′−−−→ ϕ0,2 µ−−−→ B0,2 d′−−−→ B1,2 −−−→ . . .y y y y y

...
...

...
...

...

(4.4.11)

The maps d′ and d′′ describe the differentials of the bicomplexes ϕ∗∗ and B∗∗, the map

µ induces a morphism of bicomplexes. This means that, while the (d′, d′′) squares

anti-commute, the (µ, d′′) squares commute. For any (u[0] ⊗ (2πi)tω) in ϕ0,q, we have

d′′h(u[0] ⊗ (2πi)tω) = d′′((−1)|ω|u[1] ⊗ (2πi)t−1ω) = (−1)|ω|u[1] ⊗ (2πi)t−1d′′(ω)

hd′′(u[0] ⊗ (2πi)tω) = h(u[0] ⊗ (2πi)td′′(ω)) = (−1)|d
′′(ω)|u[1] ⊗ (2πi)t−1d′′(ω)

(4.4.12)
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It follows that d′′ ◦ h+ h ◦ d′′ = 0.

Now, note that given any ϕ−p,q, the morphism µ is zero (by definition) unless

p = 0. Hence N ◦ µ − µ ◦ N is non-trivial only on terms ϕ−1,∗ and ϕ0,∗. Given

u[1] ⊗ (2πi)tω1 ∈ ϕ−1,q and u[0] ⊗ (2πi)t
′
ω0 ∈ ϕ0,q′−1, we get

(N ◦ µ− µ ◦N)(u[0] ⊗ (2πi)t
′
ω0 + u[1] ⊗ (2πi)tω1)

= (−1)|ω0|u[2] ⊗ (2πi)t
′−1(∂ + ∂̄)ω0 − (−1)|ω1|u[1] ⊗ (2πi)t−1(∂ + ∂̄)ω1

= (d′ ◦ h+ h ◦ d′)(u[0] ⊗ (2πi)t
′
ω0 + u[1] ⊗ (2πi)tω1)

(4.4.13)

Therefore the morphisms N ◦ µ and µ ◦N are homotopic.
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5 The Connes-Karoubi exact sequence of K-theories

—————————————————————————————————————

In Chapter 3, we have shown that the periodicity operator S appearing in the

cyclic homology of the sheaf DX∗ of differential operators can be identified with the

monodromy operator N as in theory of the nearby cycles complex. In Chapter 4, we

have shown that the periodicity operator S appearing in the cyclic cohomology of the

ring of differential operators D(X) on a compact complex manifold X corresponds to

the operator N on Consani’s complex. Thereafter, we developed this idea to define

an analogue of the nearby cycles complex at Archimedean infinity, endowed with an

operator N .

One also knows that the periodicity long exact sequence in cyclic homology (see

(1.1.19)) for a locally convex algebra A can be lifted to a long exact sequence of

K-theory groups of A (see Connes & Karoubi [13])

Ki+1(A) −−−→ Ktop
i+1(A) −−−→ Krel

i (A) −−−→ Ki(A) −−−→ Ktop
i (A)yDi+1

ychi+1

ychreli yDi ychi
Hi+1(A,A) −−−→ HCi+1(A) −−−→ HCi−1(A) −−−→ Hi(A,A) −−−→ HCi(A)

Here Kalg
n (A) (resp. Ktop

n (A), Krel
n (A)) denotes the algebraic (resp. topological, rela-

tive) K-theory groups of A. The map Di is the Dennis trace while chtopi+1 : Ktop
i+1(A)→

HCi+1(A) and chreli : Krel
i (A) → HCi−1(A) are the corresponding Chern maps. For

the construction and properties of the Chern maps, we refer to [13]. For the construc-

tion of the Dennis trace map, see [31, §8.4.3].
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It is well known that, if X is a compact manifold, the ring D(X) of differential

operators on X is a locally convex algebra. By taking hypercohomologies, when X is a

locally Stein space, we have considered the cyclic homology of the sheaf of differential

operators DX in Chapter 3. In this chapter we will define K theory groups (algebraic,

topological and relative) for the sheaf of differential operators DX and prove that they

fit into a long exact sequence similar to the one described above. Then, we will define

the corresponding Chern maps chtopi+1 : Ktop
i+1(DX)→ HCi+1(DX), chreli : Krel

i (DX)→

HCi−1(DX) and also a Dennis trace map Di : Kalg
i (DX)→ HHi(DX) connecting the

K-theory long exact sequence to the periodicity sequence. In doing so, we will use

the definition of generalized sheaf cohomology for simplicial sheaves due to Brown

and Gersten [5].

5.1 Preliminaries from Algebraic Topology

From Chapter 1, we recall that a simplicial set is a contravariant functor X from the

simplicial category ∆ to the category of sets, i.e.

X : ∆op −→ (Sets) [n] 7→ X([n]) (5.1.1)

Recall that the category ∆ consists of objects [n] = {0, 1, 2, ..., n}, n ≥ 1, a morphism

[m] → [n] being an order increasing map {0, 1, 2, ...,m} → {0, 1, 2, ..., n}.The sets

X([n]) are denoted by Xn. Hence, given a morphism φ : [m] → [n] in ∆, we have a

map

φ∗ : Xn −→ Xm (5.1.2)
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The standard n-simplex, denoted ∆n, is the representable functor

∆n := Hom∆( , [n]) : ∆ −→ (Sets) (5.1.3)

and hence a simplicial set whose k-simplices are the elements of the set Hom∆([k], [n])

for any k ∈ N. Hence, given φ : [m] −→ [n] in ∆, there is a morphism of functors

φ∗ : ∆m −→∆n Hom∆([k], [m]) −→ Hom∆([k], [n]) for each k ∈ N (5.1.4)

The geometric realization of ∆n is the geometric n-simplex

∆n = {(x0, x1, ..., xn) ∈ Rn+1|
n∑
i=0

xi = 1, xi ≥ 0} (5.1.5)

The geometric realization of the simplicial set X, denoted |X|, is defined as the

quotient of the disjoint union
∞∐
n=1

Xn ×∆n (5.1.6)

by the relations

(x, φ∗(y)) ≈ (φ∗(x), y) for any x ∈ Xn, y ∈ ∆m and any φ : [m]→ [n] in category ∆

(5.1.7)

For a given simplicial set X, we denote by πi(X) the i-th homotopy group of its

geometric realization |X|.

Given a category C, we can define a simplicial set NC, whose n-th simplex is the

set of all diagrams in C of the form

X0 −→ X1 −→ .... −→ Xn (5.1.8)
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The i-th face (resp. i-th degeneracy) of this simplex is defined by deleting the object

Xi (resp. replacing the object Xi by the identity 1 : Xi → Xi). We refer to NC

as the nerve of the category C. If we treat a group G as a category consisting of a

single object ∗, the morphisms of which are elements of G (with composition defined

by multiplication), the nerve of this category is denoted by BG. The geometric

realization of BG is also called the classifying space of G.

Recall that a groupN is said to be perfect if it equals its own commutator subgroup,

i.e. [N,N ] = N . Suppose that a connected topological space X is such that its

fundamental group π1(X) is perfect. Then Quillen’s +-construction attaches to the

space X, a collection of 2-cells and 3-cells to form a new space X+, such that there

exists an inclusion i : X → X+ so that π1(X+) = 1 and

i∗ : H∗(X,Z) −→ H∗(X
+,Z) (5.1.9)

is an isomorphism. Furthermore, the space X+ has the following universal property:

if f : X → Y is a morphism of topological spaces such that f∗(π1(X)) = 1, then the

morphism f factors uniquely through X+.

Now, suppose that X is a connected CW-complex and let N be a perfect normal

subgroup of π1(X). Then, we can consider a covering space X̃N of X with π1(X̃N) =

N and apply the +-construction above to the space X̃N to define X̃+
N . Finally, we let

X+ denote the pushout

X̃N −−−→ Xy i

y
X̃+
N −−−→ X+

(5.1.10)

Then, it follows from van Kampen’s theorem, that π1(X+) = π1(X)/N . The space

X+ also has the universal property that a morphism f : X → Y of topological spaces
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such that f∗(N) = 1 factors through X+.

It is important to note that the +-construction is not canonical and therefore may

not always be functorial for all choices of X+.

5.2 Definitions and Exact Sequences

If A is an algebra over C, we define the group GL(A) to be the direct limit of the

general linear groups

GL(A) = lim−→ GLN(A)

The algebraic K theory of A (as defined by Quillen in [34]) is given by

Kalg
n (A) = πn(BGL(A)+) n ≥ 0 (5.2.1)

Here BGL(A) denotes the classifying space of GL(A) considered as a discrete group.

Then π1(BGL(A)) = GL(A). We recall here that the normal subgroup E(A) of

GL(A), generated by elementary matrices, is perfect and that

[GL(A), GL(A)] = [E(A), E(A)] = E(A) (5.2.2)

Then BGL(A)+ is the + construction of Quillen with respect to E(A), which is a

perfect normal subgroup of GL(A) = π1(BGL(A)). For our purposes, it is important

to ensure that the construction BGL(A)+ is functorial. We will therefore assume

that BGL(A)+ is defined as the pushout

BE(Z) −−−→ BE(Z)+y y
BGL(A) −−−→ BGL(A)+

(5.2.3)
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This setup uses the canonical morphism Z→ A for all (unital) rings. It also follows

directly from this construction that the +-construction commutes with the direct

limit.

Furthermore, suppose that A has a topological structure, for instance, A is a Banach

algebra (or more generally, a locally convex algebra). Then, one can associate to A

a simplicial ring A∗ such that An = C∞(∆n)⊗̂A. Here C∞(∆n) refers to the set of

C∞-functions on geometric n-simplex ∆n and ⊗̂ is the completed tensor product (see

Section 1.2 for details). This leads to a simplicial group GL(A∗) and an inclusion

GL(A) ∼= GL(A0) ↪→ GL(A∗). The continuous inclusion of groups of CW type gives

a sequence of homotopy fibrations (see [30, §6.12])

GL(A)→ GL(A∗)→ GL(A∗)/GL(A)
θ−−−→ BGL(A)→ BGL(A∗) (5.2.4)

Here θ is defined on the simplices σ of dimension n by the formula

θ(σ) = (α1, ..., αn) where αi = σ̃(i− 1)σ̃(i)−1, 0 ≤ i ≤ n (5.2.5)

where σ̃ is the class of an element σ ∈ GL(An)/GL(A). By applying the + construc-

tion of Quillen to the last three spaces above, we have a homotopy fibration

(GL(A∗)/GL(A))+ → BGL(A)+ → BGL(A∗)
+ = BGL(A∗) (5.2.6)

The last equality in the diagram above follows from the fact that πn(BGL(A∗)) =

πn−1(GL(A∗)). By definition,

Ktop
n (A) = πn−1(GL(A∗)) = πn(BGL(A∗)) (5.2.7)
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We define the relative K-theory Krel
n (A) to be

Krel
n (A) := πn((GL(A∗)/GL(A))+) (5.2.8)

We have the following long exact sequence of K theories/homotopy groups corre-

sponding to the fibration (5.2.6).

−−−→ πn((GL(A∗)/GL(A))+) −−−→ πn(BGL(A)+) −−−→ πn(BGL(A∗)
+) −−−→

|| || ||

Krel
n (A) Kalg

n (A) Ktop
n (A)

(5.2.9)

In [13, §3.7] it is shown that one can define Chern characters chtopi+1 : Ktop
i+1(A) →

HCi+1(A) and chreli : Krel
i (A) → HCi−1(A) such that, along with the Dennis trace

Di : Kn(A) → Hi(A,A), the long exact sequence of homotopy groups lifts the peri-

odicity long exact sequence for the algebra A

Ki+1(A) −−−→ Ktop
i+1(A) −−−→ Krel

i (A) −−−→ Ki(A) −−−→ Ktop
i (A)yDi+1

ychi+1

ychreli yDi ychi
Hi+1(A,A) −−−→ HCi+1(A) −−−→ HCi−1(A) −−−→ Hi(A,A) −−−→ HCi(A)

(5.2.10)

Our objective is to carry out the same construction in sheaf hypercohomology,

where we work with the sheaf of differential operators DX on X and finally, for the

structure sheaf of an algebraizable Noetherian formal scheme. In the next section, we

review the definition of generalized sheaf cohomology due to Brown and Gersten (see

[5]). We use this theory to define the K-theories of the sheaf of differential operators

and construct the analogous long exact sequence involving algebraic, topological and

relative K-theory. Finally, we define Chern maps from the terms in this long exact
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sequence to the periodicity sequence for the cyclic homology of DX .

5.3 Simplicial Sheaves and Generalized Sheaf Cohomology

Let X be a topological space. A simplicial sheaf on X is a sheaf of simplicial sets on

X; in other words, it is a simplicial object in the category of sheaves on X. If K is

a simplicial sheaf, we denote by Γ(U,K) the simplicial set of sections of K over an

open set U in X.

A map of f : F → F ′ of simplicial sheaves on X induces a morphism on stalks,

which are simplicial sets. Hence for each x ∈ X, we have a morphism

fx : Fx −→ F ′f(x)

of simplicial sets. The map f is said to be a weak equivalence if the morphism on

stalks induces a weak equivalence of simplicial sets, in other words, for each x ∈ X,

the maps

π0(fx) : π0(Fx) −→ π0(F ′f(x)) πi(fx) : πi(Fx) −→ πi(F
′
f(x)) for i > 0

are isomorphisms of groups for i > 0 and isomorphisms of sets for i = 0. Here the

homotopy groups of a simplicial set refer to the homotopy groups of its geometric

realization.

A map p : E1 → E2 of simplicial sets is said to be a Kan fibration if it satisfies the

following property: Given a collection of n + 1 n-simplices x0, ..., xk−1, xk+1, ..., xn+1

of E1 which satisfy the compatibility condition dixj = dj−1xi, i < j, i 6= k, j 6= k (the

di being the face maps of the respective simplicial sets) and for every n+ 1 simplex y
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of E2 such that diy = p(xi), there exists an n+ 1-simplex x of E1 such that dix = xi

for each i and p(x) = y. Kan fibrations admit the following alternative description :

Given a commutative square
∆n,k −−−→ E1yi yp
∆n g−−−→ E2

(5.3.1)

in which ∆n is the standard n-simplex and ∆n,k is the union of all faces but the k-th

face of ∆n, there exists a lift g̃ : ∆n → E1 that makes the diagram commutative.

Suppose that p : E1 → E2 is a Kan fibration and that E2 has only one 0-simplex ∗.

Then F = p−1(∗) is the fibre of the map p and we have a long exact sequence

→ πq(F )→ πq(E1)→ πq(E2)→ πq−1(F )→ ... (5.3.2)

A map p : E → B of simplicial sheavs is said to be a global fibration if for open sets

U ⊂ V the map

Γ(V,E)
(Γ(V,p),res)−−−−−−→ Γ(V,B)×Γ(U,B) Γ(U,E) (5.3.3)

of simplicial sets is a Kan fibration. If we take U = φ, it means that Γ(V,E) →

Γ(V,B) is a Kan fibration for any open set V . A monomorphism of simplicial sheaves

is said to be a cofibration. Together with the notions of weak equiavalence, cofibration

and global fibration defined above, the category S(X) of simplicial sheaves on X is a

model category in the sense of Quillen [35].

The simplicial sheaf ∗ defined by Γ(U, ∗) = ∗ is a final object in the above category.

Accordingly, an object K of S(X) is said to be flasque if the unique morphism K → ∗

is a global fibration. By the properties of a model category, given any object L of
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S(X), the map L→ ∗ factors as

L
i−−−→ R(L)

p−−−→ ∗ (5.3.4)

where i is a trivial cofibration (i.e. a cofibration as well as a weak equivalence) and p

is a global fibration. The sheaf R(L) along with the morphism i : L → R(L) is said

to be a flasque resolution of L.

Remark 5.1. The association L 7→ R(L) defines a functor on S(X), known as the

fibrant replacement functor. This follows from the fact that the factorization of the

map L→ ∗ into the composition L→ R(L)→ ∗ is functorial. We also note that the

existence of functorial factorizations is not part of the original definition of a model

category by Quillen, but is now commonly assumed.

If K is a simplicial sheaf on X and i : K → R(K) is a flasque resolution of K,

we define RΓ(X,K) to be Γ(X,R(K)). The generalized sheaf cohomology of K, as

defined by Brown and Gersten (see [5, Section 2]) is

Hq(X,K) = π−q(RΓ(X,K)) = π−q(Γ(X,R(K))) (5.3.5)

If Y ⊂ X is a closed subset, or, more generally, if Φ is a family of supports, we can

similarly define RΓY (X,K) and RΓΦ(X,K). The generalized sheaf cohomology with

supports is now defined as

Hq
Φ(X,K) = π−q(RΓΦ(X,K)) (5.3.6)

Further, given a simplicial sheaf K, we define the q-th homotopy sheaf πqK to be

the sheaf associated to the presheaf U 7→ πq(Γ(U,K)). We conclude this section with
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the Brown spectral sequence.

Proposition 5.2. (Brown Spectral Sequence) If X is a scheme and K is a simplicial

sheaf on X, we have a spectral sequence

Ep,q
1 = Hq(X, π−p(K))⇒ Hp+q(X,K) (5.3.7)

More generally, if Φ is a family of supports on X, we have a spectral sequence

Ep,q
1 = Hq

Φ(X, π−p(K))⇒ HΦ(X,K) (5.3.8)

Proof. See [4] and [5].

5.4 The exact sequence of K-theories for the sheaf DX

Let X be a complex manifold of dimension n. For any open subset U of X, let D(U)

denote the ring of holomorphic differential operators on U . If (z1, ..., zn) is a system

of holomorphic local coordinates at a point p in U , any element of D(U) can be

expressed locally as a finite sum

∑
I={i1<i2<...<ik}⊆{1,2,...,n}

fI
∂

∂zi1

∂

∂zi2
...

∂

∂zik
(5.4.1)

where each fI is a holomorphic function on U . Furthermore, if U is Stein(or, more

generally, holomorphically convex), it is well known (see [24], for instance) that the

ring of holomorphic functions on U is a Fréchet algebra. Therefore, if U is Stein, the

ring of differential operators D(U) on U is a locally convex algebra and we can define

on it the projective topological tensor product ⊗π.
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Hence, applying the results (5.2.9) and (5.2.10) to the locally convex algebra D(U);

there are well defined maps from the algebraic, topological and relative K-theories of

D(U) into its Hochschild and cyclic homologies that are compatible with the period-

icity sequence.

In this section, we shall first obtain an analogous Connes-Karoubi long exact se-

quence for the sheaf of differential operators DX on the manifold X. The proof of

the existence and properties of this sequence will involve the notion of generalized

sheaf cohomology described in Section 5.3. Finally, using the fact that the manifold

X has a basis consisting of Stein open sets, we will obtain Chern maps and a Dennis

trace map that are compatible with the periodicity sequence in cyclic homology as in

(5.2.10).

Definition 5.3. Choose an open set U contained in X and consider the ring D(U).

Then D(U) is a topological ring and we can consider the simplicial ring D(U)∗ defined

as:

D(U)n = C∞(∆n)⊗̂D(U) (5.4.2)

∆n being the standard n-simplex. Denote by BGL (resp. BGLtop) the sheaf associ-

ated to the presheaf that takes the open set U to BGL(D(U)) (resp. BGL(D(U)∗)).

The inclusion GL(D(U)) = GL(D(U)0) ↪→ GL(D(U)∗) induces a (Kan) fibration

BGL(D(U))→ BGL(D(U)∗) of simplicial sets. We will show that these morphisms

induce a local fibration of simplicial presheaves, i.e. morphisms of presheaves that are

fibrations on each stalk.

Proposition 5.4. There is a local fibration of presheaves

(U 7→ BGL+(D(U))) −→ (U 7→ BGLtop(D(U))) (5.4.3)
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Here (U 7→ BGL(D(U))+) refers to the presheaf that associates the simplicial set

BGL(D(U))+ to every open set U in X and (U 7→ BGLtop(D(U))) refers to the

presheaf that associates the simplicial set BGL(D(U)∗) to every open set U of X.

Proof. For any open set U , we know that

BGL(D(U)) −→ BGL(D(U)∗) (5.4.4)

is a fibration. For any point p ∈ X, we consider the rings Dp = lim
−→
Up

D(Up) and

Dp∗ = lim
−→
Up

C∞(∆∗)⊗̂D(Up), where Up varies over all open sets of X containing p.

Then, we have an injection

GL(Dp) ↪→ GL(Dp∗) (5.4.5)

As in (5.2.6), this gives a sequence of fibrations

GL(Dp)→ GL(Dp∗)→ GL(Dp∗)/GL(Dp) −−−→ BGL(Dp)→ BGL(Dp∗) (5.4.6)

Since π1(BGL(Dp∗)) = π0(GL(Dp∗)) = 0, it follows (see [1]) that applying the

Quillen plus construction preserves the fibration, i.e. we have a fibration

(GL(Dp∗)/GL(Dp))
+ −−−→ BGL(Dp)

+ −−−→ BGL(Dp∗) (5.4.7)

Definition 5.5. Let Z denote the constant sheaf on X given by Z. Denote by DX

the sheafification of the presheaf that associates any open set U in X to the ring of
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differential operators D(U). We define the algebraic K-theory of DX to be

Kalg
n (DX) = H−n(X,Z×BGL+) (5.4.8)

Consider the sheaf [BGL+,BGLtop] associated to the presheaf defined by the homo-

topy fibres U 7→ [Z×BGL(D(U))+,Z×BGL(D(U)∗)] which is identical to the sheafifi-

cation of the presheaf that associates the simplicial set [BGL(D(U)+), BGL(D(U)∗)] =

(GL(D(U))∗/GL(D(U)))+ to any open set U in X. We shall also denote this sheaf

by GLrel+.

Let the sheaf associated to the presheaf U 7→ (GL(D(U))∗/GL(D(U))) be denoted

GLrel. We define the topological and relative K theories of DX to be

Ktop
n (DX) = H−n(X,Z×BGLtop) Krel

n (DX) = H−n(X,GLrel+) (5.4.9)

Proposition 5.6. There is a long exact sequence of K-theory groups

. . . −→ Krel
n (DX)→ Kalg

n (DX)→ Ktop
n (DX)→ Krel

n−1(DX) −→ . . . (5.4.10)

Proof. From Proposition 5.4, we have a local fibration of presheaves

(U 7→ BGL+(D(U))) −→ (U 7→ BGLtop(D(U)))

Since local fibrations are defined stalkwise, sheafification preserves local fibrations

and hence we have a local fibration of the associated sheaves

GLrel+ −→ BGL+ −→ BGLtop (5.4.11)
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Therefore, we have a local fibration of sheaves

GLrel+ −→ Z×BGL+ −→ Z×BGLtop (5.4.12)

Using [4, Theorem 7], the local fibration (5.4.12) gives rise to a long exact sequence

· · · → Hm(X,GLrel)→ Hm(X,Z×BGL+)→ (5.4.13)

Hm(X,Z×BGLtop)→ Hm+1(X,GLrel+)→ . . .

By Definition 5.5, Kalg
m (DX) = H−m(X,Z × BGL+), Ktop

m (DX) = H−m(X,Z ×

BGLtop) and Krel
m (DX) = H−m(X,GLrel+) and hence the required long exact se-

quence (5.4.10) is a restatement of (5.4.13).

5.5 Chern characters and Dennis Trace

As mentioned in Section 5.2, for a locally convex Algebra A, we have Chern maps

chtopi+1 : Ktop
i+1(A) → HCi+1(A) and chreli : Krel

i (A) → HCi−1(A) and the Dennis trace

Di : Kalg
i (A)→ HHi(A) which fit into a commutative diagram of long exact sequences

Kalg
i+1(A) −−−→ Ktop

i+1(A) −−−→ Krel
i (A) −−−→ Kalg

i (A) −−−→ Ktop
i (A)yDi+1

ychi+1

ychreli yDi ychi
Hi+1(A,A) −−−→ HCi+1(A) −−−→ HCi−1(A) −−−→ Hi(A,A) −−−→ HCi(A)

We shall now prove the same result for the K-theory groups (algebraic, topological

and relative) of the sheaf DX of differential operators on X described in Section 5.4.
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Definition 5.7. Consider the sheafification (C̃h
∗ (DX), b) of the presheaf of complexes

that associates to an open set U in X the Hochschild complex (Ch
∗ (D(U)), b) of the

ring D(U). Define the Hochschild homology HHq(DX) of the sheaf DX to be the

(−q)-th hypercohomology of the complex

HHq(DX) = H−q( ˜(Ch
∗ (DX), b)) (5.5.1)

Similarly, we consider the sheafification ( ˜BC∗(DX), b) of the presheaf of complexes

that associates to an open set U in X the “mixed complex” (BC∗(D(U)), b) of the

ring D(U), whose homology is the cyclic homology of the ring D(U). Define the

cyclic homology HCq(DX) of the sheaf DX to be the (−q)-th hypercohomology of the

complex

HCq(DX) = H−q( ˜(BC∗(DX), b)) (5.5.2)

From the Definition 5.7 and general properties of hypercohomology, it follows (see

[42, (0.4)]) that there is a periodicity long exact sequence analogous to (1.1.19) in-

volving HHq(DX) and HCq(DX).

. . . −−−→ HHq(DX)
I−−−→ HCq(DX)

S−−−→ HCq−2(DX)
B−−−→ . . . (5.5.3)

Once again, we note that the definition of hypercohomology used in Definition 5.7

is the one used in Chapter 3.

We shall now construct the Dennis trace map Di : Kalg
i (DX) → HHi(DX) as

well as the Chern maps chtopi+1 : Ktop
i+1(DX) → HCi+1(DX) and chreli : Krel

i (DX) →
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HCi−1(DX). We start with the Dennis trace. By Definition 5.5,

Kalg
i (DX) = H−i(X,Z×BGL+) (5.5.4)

Let us denote by RBGL+ the flasque resolution of BGL+. Then, by definition,

the morphism RBGL+ → ∗ is a global fibration and we have a weak equivalence

iR : BGL+ −→ RBGL+.

From Definition 5.5 and (5.3.5), we have

Kalg
i (DX) = H−i(X,Z×RBGL+) = πi(Γ(X,Z×RBGL+)) (5.5.5)

On the other hand, for each i, consider the three presheaves F alg
i0 , F alg

i1 and F alg
i2 on

X defined as

F alg
i0 (U) = πi(Z×BGL+(D(U))) F alg

i1 (U) = πi(Γ(U,Z×BGL+))

F alg
i2 (U) = πi(Γ(U,Z×RBGL+)

(5.5.6)

for any open set U in X. There are obvious morphisms of presheaves

F alg
i0

j0−−−→ F alg
i1

j1−−−→ F alg
i2

(5.5.7)

The presheaf defined by (U 7→ BGL(Z× D(U))+) for each open set U in X and its

sheafification Z×BGL+ have isomorphic stalks and hence j0 induces an isomorphism

of stalks of F alg
i0 and F alg

i1 . Hence, the corresponding sheafifications F̃ alg
i0 and F̃ alg

i1

of F alg
i0 and F alg

i1 respectively, i.e. we have an isomorphism of sheaves

j̃0 : F̃ alg
i0

'−→ F̃ alg
i1 (5.5.8)
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The morphism j1 is induced by the inclusion iR : Z×BGL+ → Z×RBGL+ which is

a weak equivalence of simplicial sheaves and hence a weak equivalence of their stalks.

Hence the stalks of F alg
i1 and F alg

i2 are isomorphic and we have an isomorphism of

sheaves

j̃1 : F̃ alg
i1

'−→ F̃ alg
i2 (5.5.9)

Let us denote the common sheafification of F alg
i0 , F alg

i1 and F alg
i2 by F alg

i . On each

Stein open set U , we have, by definition, Kalg
i (D(U)) = πi(BGL

+(D(U)) and there-

fore, a Dennis trace map

Di : Kalg
i (D(U)) = πi(BGL

+(D(U))→ HHi(D(U)) (5.5.10)

Since X has a basis consisting of Stein open sets, if HHi(DX) denotes the sheaf

associated to the presheaf U 7→ HHi(D(U)), the map Di, at each Stein open set,

gives us a morphism of sheaves (as in the result of Lemma A.3.14), also denoted by

Di : F alg
i = F̃ alg

i0 −→ HHi(DX)

(at the presheaf level, on U open in X, we compose the map πi(Z×BGL+(D(U)))→

πi({0} ×BGL+(D(U))) with the Dennis trace).

The morphism F alg
i → HHi(DX) of sheaves induces a morphism of global sections

Γ(X,F alg
i )→ Γ(X,HHi(DX)) and, by abuse of notation, we still denote this induced

morphism

Γ(X,F alg
i )→ Γ(X,HHi(DX)) (5.5.11)
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by Di. Since F alg
i is also the sheafification of F alg

i2 , we have a morphism

Kalg
i (DX) = πi(Γ(X,Z×RBGL+)) = Γ(X,F alg

i2 )→ Γ(X,F alg
i )→ Γ(X,HHi(DX))

(5.5.12)

Finally, the Hochschild homology HHi(DX) being defined as the hypercohomology

of the complex (C∗h(DX), b) (notation as in Definition 5.7), we have a morphism from

Γ(X,HHi(DX)) to HHi(DX). We compose this sequence of maps to obtain the

Dennis trace

Di : Kalg
i (DX) −→ HHi(DX) (5.5.13)

(still denoted by Di). Using an identical process, for each i, we can construct the

presheaves F top
i0 , F top

i1 and F top
i2 (resp. F rel

i0 , F rel
i1 and F rel

i2 ) and their common

sheafification F top
i (resp. F rel

i ). Once again, using the fact that X has a basis

consisting of Stein open sets, we can define the Chern maps

chtopi+1 : Ktop
i+1(DX)→ HCi+1(DX)

chreli : Krel
i (DX)→ HCi−1(DX)

(5.5.14)

Proposition 5.8. There is a commutative diagram of long exact sequences

...→ Krel
i+1(DX) −−−→ Kalg

i+1(DX) −−−→ Ktop
i+1(DX)→ ...ychreli yDi ychtopi

...→ HCi(DX) −−−→ HHi+1(DX) −−−→ HCi+1(DX)→ ...

(5.5.15)

Proof. The periodicity long exact sequence for DX follows from the definition of cyclic

homology for the sheaf DX as mentioned in (5.5.3). We already know that the maps

chtopi , chreli and Di are compatible with the maps in the long exact sequence on each

open set U in X. Since the Chern maps and the Dennis trace in the above setup have
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been obtained by patching over all such open sets, the diagram is commutative.

5.6 The long exact sequence for formal schemes

The constructions described in the previous sections may also be carried out for the

structure sheaves of formal schemes. Furthermore, in the setting of formal schemes,

(where we use Zariski topologies instead of complex topology), we show that the sheaf

BGL is flasque, i.e. is its own flasque resolution.

Definition 5.9. (see [29, II.9]) A Noetherian formal scheme is a locally ringed space

(X,OX) which can be covered by a finite open cover {Ui} such that for each i, the

pair (Ui,OX|Ui) is isomorphic, as a locally ringed space, to the completion X̂ of a

Noetherian scheme X along a closed subscheme Y . An affine (Noetherian) formal

scheme X̂ is obtained by completing a single Noetherian scheme X along a closed

subscheme Y .

If X is a Noetherian scheme and we complete X along itself, we get X̂ = X; thus

the category of Noetherian formal schemes includes all Noetherian schemes. Note

that if the Noetherian scheme X is completed along a subscheme Y , then the sheaf of

rings OX is supported on Y . Choose an open set U in X and consider the ring OX(U).

By definition, OX(U) is the completion lim
←−
n≥1

OX(U)/InY (U) where IY is the sheaf of

ideals corresponding to the subscheme Y . The completed ring OX(U) is therefore a

Banach algebra.

Note that when V is an open set in X such that V ⊆ X − Y , we have OX(V ) = 0.

For any N ≥ 1, let us set GLn(OX(V )) = 1 and GL(OX(V )) = 1.
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For each N , let BGL+
N and BGLtop

N denote the sheaves on X asssociated to

the presheaves U 7→ BGLN(OX(U))+ and U 7→ BGLN(OX(U)∗) respectively. Here

OX(U)∗ refers to the simplicial ring C∞(∆∗)⊗̂OX(U) obtained from the Banach al-

gebra OX(U) as in Section 5.2. Further, denote by BGL+ and BGLtop the sheaves

associated to the presheaves

U 7→ BGL+(OX(U)) U 7→ BGL(OX(U)∗)

respectively, for any open set U in X. Again, it is understood that if U ⊆ X − Y ,

then GL(OX(U)∗) = 1. We have:

Proposition 5.10. (1)There is a global fibration of presheaves

(U 7→ BGL(OX(U))) −→ (U 7→ BGL(OX(U)∗))

Here (U 7→ BGL(OX(U))) refers to the presheaf that associates the simplicial set

BGL(OX(U))) to every open set U in X and (U 7→ BGL(OX(U)∗)) refers to the

presheaf that associates the simplicial set BGL(OX(U)∗) to every open set U of X.

(2) The morphism of sheaves

BGL+ −→ BGLtop

is a local fibration.

Proof. (1) Let U and V be open sets in X such that V ⊆ U . When V 6⊆ X − Y , we

proceed as follows: The restriction map from OX(U) to OX(V ) induces restrictions
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GL(OX(U))→ GL(OX(V )), GL(OX(U)∗)→ GL(OX(V )∗) and a pullback square

GL(OX(U)∗)×GL(OX(V )∗) GL(D(V )) −−−→ GL(OX(V ))y y
GL(OX(U)∗) −−−→ GL(OX(V )∗)

(5.6.1)

Since GL(OX(U)) ↪→ GL(OX(U)∗) is an injection, it follows that we must have an

injection of GL(OX(U)) into the pullback:

GL(OX(U)) ↪→ GL(OX(U)∗)×GL(OX(V )∗) GL(OX(V )) (5.6.2)

and hence induces a Kan fibration on classifying spaces. Applying the classifying

space functor, we see that

BGL(OX(U)) −−−→ BGL(OX(U)∗)×BGL(OX(V )∗) BGL(OX(V )) (5.6.3)

is a Kan fibration.

When V ⊆ X − Y but U 6⊆ X − Y , we have to check that

BGL(OX(U))→ BGL(OX(U)∗)

is a fibration, which follows directly from (5.2.4). Finally, when U ⊆ X−Y , we must

show that ∗ → ∗ is a fibration, which is trivial.

(2) Choose a point p in X. If p 6∈ Y , then the stalks of both sheaves at p are just ∗

and ∗ → ∗ is a fibration. If p ∈ Y , then we consider the local ring OX,p = lim
−→
Up

OX(Up)

and the simplicial ring OX,p∗ = lim
−→
Up

C∞(∆∗)⊗̂OX(Up) where Up varies over all open
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sets in X containing p. Then, we have an injection

GL(OX,p) ↪→ GL(OX,p∗) (5.6.4)

As in (5.2.4), this leads to a fibration

BGL(OX,p) −→ BGL(OX,p∗) (5.6.5)

Since π1(BGL(OX,p∗)) is trivial, we can apply plus construction and still have a

fibration

BGL(OX,p)+ −→ BGL(OX,p∗) (5.6.6)

Therefore, by definition, we have a local fibration of the sheafifications BGL+ −→

BGLtop.

We shall now define the algebraic, topological and relative K theories of a formal

scheme and show that they are related by a long exact sequence analogous to the one

in Proposition 5.6.

Definition 5.11. Let Z denote the constant sheaf on Y given by Z. The algebraic

K-theory of X is defined to be

Kalg
n (X) = H−n(X,Z×BGL+)

Consider the sheafification [BGL+,BGLtop] of the presheaf which associates to an

open set U in X the homotopy fibre U 7→ [Z×BGL(OX(U)+),Z×BGL(OX(U)∗)]. The

homotopy fibre is identical to the presheaf U 7→ [BGL(OX(U)+), BGL(OX(U)∗)] We

shall also denote this sheaf by GLrel+ and use GLrel to denote the sheafification of the
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presheaf which associates to an open set U in X the set 7→ [BGL(OX(U)), BGL(OX(U)∗)].

We define the topological and relative K theories of X to be

Ktop
n (X) = H−n(X,Z×BGLtop) Krel

n (X) = H−n(X,GLrel+) (5.6.7)

Proposition 5.12. There is a long exact sequence of K-theory groups

. . . −→ Krel
n (X)→ Kalg

n (X)→ Ktop
n (X)→ Krel

n−1(X) −→ . . . (5.6.8)

Proof. The proof is identical to that of Proposition 5.6.

In the case of formal schemes, however, we will also show that the presheaves BGL,

BGLtop and GLrel are flasque.

Lemma 5.13. Let R be a Noetherian integral domain and suppose that p is a prime

ideal. Choose some g ∈ R − p Then, the natural map from R̂ = lim←− R/pn to R̂g =

lim←− Rg/p
n
g is an injection.

Proof. The elements of R̂ are, by definition, sequences of the form (r1, r2, ...) where,

for positive integers i ≥ j, ri ≡ rj (mod pj). Suppose that the sequence (r1, r2, ...)

maps to the zero sequence in R̂g. Then, for each ri, we must have ri ∈ pig. Since R is

an integral domain, this means that we have an xi ∈ pi and a power gki such that

gkiri = xi ∈ pi for each i

Since pi is a primary ideal, ri /∈ pi would imply that some power of gki lies in pi. This

is impossible since g /∈ p. Hence, each ri ∈ pi and the map is injective.
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Lemma 5.14. Let X be a topological space and suppose that F → E → B be a

fibration sequence of simplicial presheaves on X, with E and B both flasque. Then

the fibre F is also a flasque presheaf.

Proof. Let V ⊂ U be nonempty open sets in X. Consider the following fibre squares

F (U) −−−→ ∗y y
E(U) −−−→ B(U)

F (V ) −−−→ ∗y y
E(V ) −−−→ B(V )

(5.6.9)

Since the restrictions E(U) → E(V ) and B(U) → B(V ) are Kan fibrations (E and

B being flasque), we have to show that the morphism between their fibre products,

i.e. the morphism F (U) → F (V ) is also a Kan fibration. This is proved as follows:

Recall that, by definition, a Kan fibration, is that which has a right lifting property

with respect to monomorphisms of simplicial sets that are also weak equivalences

(also called trivial cofibrations), i.e. E ′ → B′ is a Kan fibration, if given any trivial

cofibration X → Y of simplicial sets, and a commutative square of morphisms

X −−−→ E ′y y
Y −−−→ B′

(5.6.10)

there exists a ‘lift’, i.e. a morphism Y → E ′ that fits into the commutative diagram.

Suppose, therefore that we have the following commutative digram, with a trivial

cofibration X → Y :
X −−−→ F (U)y y
Y −−−→ F (V )

(5.6.11)

Then, by composing with the maps F (U) −→ E(U) and F (U) −→ B(U), we get the
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commutative diagrams

X −−−→ E(U)y y
Y −−−→ E(V )

X −−−→ B(U)y y
Y −−−→ B(V )

(5.6.12)

Since the maps E(U) → E(V ) and B(U) → B(V ) are fibrations, we have ‘lifts’ in

both the squares of (5.6.12). These lifts give maps from Y to E(U) and ∗ that agree

on B(U). Since F (U) is a pullback, we have a map Y → F (U) that makes the digram

commutative. Hence, F (U)→ F (V ) is a Kan fibration.

When we consider V = φ, then E(V ) = B(V ) = ∗ and E(U) and B(U) are Kan

complexes. Once again, from the fibre square

F (U) −−−→ ∗y y
E(U) −−−→ B(U)

(5.6.13)

it follows that F (U) is a Kan complex. This shows that the presheaf F is flasque.

Proposition 5.15. Let (X,OX) be the algebraic formal scheme obtained by completing

a Noetherian integral scheme X along an irreducible integral subschmeme (of positive

codimension) Y . The simplicial presheaves BGL, BGLtop and GLrel are flasque in

the category of simplicial sheaves, in other words, the maps BGL→ ∗, BGLtop → ∗

and GLrel → ∗ are global fibrations of presheaves.

Proof. By definition, a simplicial sheaf F is flasque if and only if

(1) F(U)→ F(V ) is a Kan fibration for each V ⊂ U and,

(2) Each simplicial set F(U) is a Kan complex, i.e. F(U)→ ∗ is a Kan fibration.
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Let V ⊆ U be two open sets in X. Since Y is an irreducible subscheme, Y is given

locally by a prime ideal. Therefore, from Lemma 5.13 above, it follows that the map

OX(U) → OX(V ) is an injection. Therefore, the maps GL(OX(U)) → GL(OX(V ))

and

GL(OX(U)∗)→ GL(OX(V )∗)

are also injections. The injections induce a Kan fibration of classifying spaces and

hence,

BGL(OX(U))→ BGL(OX(V )) BGL(OX(U)∗)→ BGL(OX(V )∗)

are Kan fibrations. Further, it is well known for any groupG, the simplicial setBG is a

Kan complex, which implies that the simplicial sets BGL(OX(U)) and BGL(OX(U)∗)

are Kan complexes. This proves that both the presheaves BGL and BGLtop are

flasque.

The fact that the presheaf U 7→ GL(OX(U)∗)/GL(OX), which is the fibre of

BGL −→ BGLtop, is flasque follows from Lemma 5.14. This finishes the proof.

Finally, using the same exact proof as that of Proposition 5.8 we have the following

long exact sequences:

Proposition 5.16. There is a commutative diagram of long exact sequences:

...→ Krel
i+1(X) −−−→ Kalg

i+1(X) −−−→ Ktop
i+1(X)→ ...ychreli yDi ychtopi

...→ HCi(X) −−−→ HHi+1(X) −−−→ HCi+1(X)→ ...

(5.6.14)

Proof. As in the proof of Proposition 5.8 we have to construct the maps Di, ch
top
i and

chreli , which is achieved by the same construction as in Section 5.5. The rest of this
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proof is also identical to that of Proposition 5.8.
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6 Modular Hecke Algebras, Rankin Cohen Brack-

ets and an Enriched Archimedean Complex

—————————————————————————————————————

For a congruence subgroup Γ = Γ(N) of SL2(Z), we can consider the modu-

lar curve X(Γ) = Γ\H∗ where H∗ denotes the union of the upper half plane H =

{z ∈ C | Im(z) > 0 } with the rational points on the real line. It is well known that

the modular curve X(Γ) is a compact Riemann surface. For any compact Riemann

surface X, Consani’s complex Kijk (see Chapter 4) becomes (for i, j, k ∈ Z)

Ki,j,k(X) =


⊕

a≤b,a+b=j+1,|a−b|≤2k−i(Ω
a,b
X + Ωb,a

X )R
(

1+j−i
2

)
if k ≥ max{0, i}

0 otherwise

(6.0.15)

with differentials d′ and d′′ and total differential d = d′ + d′′ as defined in (4.1.2). In

Theorem 2.8 we have recalled how the complex Ki,j,k(X) can be used to compute the

real Deligne cohomology of X. When we choose X = X(N), i.e. the N -th modular

curve X(N) = Γ(N)\H we shall consider the corresponding complexes K∗∗∗(X(N)).

We tensor the terms K∗∗∗(X(N)) by modular forms of level Γ(N) and appropriate

weight and consider their direct limit K∗∗∗ over all N ≥ 1, which we refer to as the

“enriched archimedean complex” K∗∗∗en .

For any fixed congruence subgroup Γ ⊆ SL2(Z), we consider the module of func-

tions on Γ\G+
2 (Q) of finite support taking values in the enriched archimedean complex
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K∗∗∗ and satisfying a suitable “covariance condition” (see Definition 6.4). This mod-

ule, which we denote by Bi,j,k(Γ), is our main object of study. In Proposition 6.8),

we show that Bi,j,k(Γ) is a bimodule over an algebra AT (Γ), which is a slight variant

of Connes-Moscovici’s modular Hecke algebra A(Γ)(see Section 6.1 for definitions).

Following [10], we know that the Hopf algebra H1 of “codimension one foliations” of

Connes-Moscovici acts on the modular Hecke algebra A(Γ). We then show that the

action of the same Hopf algebra H1 determines an action on the module Bi,j,k(Γ) and

that the action of H1 on the system (AT (Γ),Bi,j,k(Γ)) is “flat” in a sense to be made

precise in Definition 6.12.

We also consider a smaller Hopf algebra h1 that is obtained from H1 by setting

some of the generators of H1 equal to zero. We then define a “reduced version” of

the algebra AT (Γ) on which h1 acts and denote this new algebra by ArT (Γ). We also

have a counterpart of Bi,j,k(Γ) in this framework which we denote by Bi,j,kr (Γ). Once

again, we show that Bi,j,kr (Γ) is a bimodule over ArT (Γ). The smaller Hopf algebra h1

acts on Bi,j,kr (Γ) and the action of h1 on the system (ArT (Γ),Bi,j,kr (Γ)) is “flat” (see

Proposition 6.16).

Finally, in Section 6.3, we define Rankin Cohen brackets on the modules Bi,j,k(Γ).

These Rankin Cohen pairings combine the Rankin Cohen pairings defined by Connes

and Moscovici [9] with the pairings on the archimedean complex defined by Consani

in [18].
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6.1 Hecke Algebras and Hecke Correspondences

Throughout, we will assume Γ ⊆ SL2(Z) is a congruence subgroup Γ = Γ(N) for

some integer N ≥ 1. Recall that the congruence subgroup Γ(N) is defined as

Γ(N) = {α ∈ SL2(Z) : α ≡

1 0

0 1

 (mod N)} (6.1.1)

We will sometimes denote this group by ΓM . For any α ∈ GL+
2 (Q), consider the

double coset ΓαΓ as a subset of GL+
2 (Q). Any left coset Γβ of Γ in SL2(Z) that has

nonempty intersection with ΓαΓ is contained in it. Hence, the double coset ΓαΓ may

be written as a (disjoint) union of left cosets; in other words, there exist finitely many

αi ∈ GL+
2 (Q), 1 ≤ i ≤ k, such that

ΓαΓ =
k⋃
i=1

αiΓ (6.1.2)

Consider an orbit Γz for some z ∈ H for the action of Γ on the upper half plane

H = {z ∈ C | Im(z) > 0 }. Then Γz is an element of the (compact) modular curve

X(Γ) = Γ\H∗, where H∗ denotes the union H∪Q of the upper half plane H with the

rational points on the real line. Then the coset ΓαΓ induces a “multi valued map”

on X(Γ) by mapping the orbit Γz to the set of orbits {Γαiz}. This notion may be

described precisely in terms of a correspondence, known as the Hecke correspondence.

For α ∈ GL+
2 (Q), consider, therefore, the group Γα = Γ ∩ α−1Γα. There is a

natural surjection p : Γα\H∗ = X(Γα) � X(Γ) = Γ\H∗ and also a well defined map

α : X(Γα) → X(Γ) defined by sending the orbit Γαz to Γαz. Hence, we obtain a

diagram:
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X(Γα)

p↙ ↘α

X(Γ) X(Γ)

(6.1.3)

We recall that a correspondence from an algebraic scheme X to a scheme Y is

a subscheme Z of X × Y that is dominant over X by means of the projection p1 :

X × Y → X onto the first coordinate. If f : X → Y is any morphism of schemes, its

graph Γf = {(x, f(x)) ∈ X × Y | x ∈ X} ⊆ X ×Y is a correspondence from X to Y .

The set of correspondences from X to Y is denoted by Cor(X, Y ). In the diagram

(6.1.3), the image of X(Γα) under the map

X(Γα)
p×α−→ X(Γ)×X(Γ)

gives us a correspondence from X(Γ) to itself. We refer to this construction as the

Hecke correspondence T (ΓαΓ) or simply T (α). For β ∈ GL+
2 (Q), we set

T (β) · T (α) =
k∑
i=1

ΓβαiΓ ΓαΓ =
k⋃
i=1

αiΓ (6.1.4)

The C-algebra generated by these operators T (α), α ∈ GL+
2 (Q) is the Hecke

Algebra relative to the curve X(Γ) and is denoted by H(Γ).

Remark 6.1. For three algebraic schemes X, Y and Z, we can compose f ∈

Cor(X, Y ) and g ∈ Cor(Y, Z) to define the correspondence

g ◦ f = pXZ∗(p
∗
XY (f) · p∗Y Z(g)) ∈ Cor(X,Z) (6.1.5)

where pXY : X × Y × Z → X × Y denotes the natural projection (and similarly for
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pY Z and pXZ) where · denotes the product of cycles in X×Y ×Z. However, note that

the product of cycles is defined only up to an equivalence. Hence the right hand side

of (6.1.5) is defined only up to equivalence. It is therefore advantageous to use the

explicit cycle given by (6.1.4) to define the product of correspondences T (β) · T (α).

The equivalence class of the explicit cycle given by (6.1.4) for the product T (β) ·T (α)

agrees with the general definition for the product T (β) ·T (α) given by the method of

(6.1.5).

If γ =

a b

c d

 ∈ GL+
2 (Q), and f : H→ C is a holomorphic function, we define

f |2kγ(z) = det(γ)kf(z)jγ(z)k where jγ(z) = (cz + d)−2 (6.1.6)

Definition 6.2. Let Γ = Γ(N) be a congruence subgroup and let k be any nonnegative

integer. Suppose that f : H→ C is a function satisfying the following properties

(1) f is holomorphic.

(2) f |2k(z)γ = f(z) for all γ ∈ Γ.

(3) Let q = e2πiz/N and define f∞ : {q ∈ C|0 < |q| < 1} → C by setting

f∞(q) = f(N
log q

2πi
) (6.1.7)

(well defined due to (2) ). Then f∞ can be continued holomorphically at q = 0.

We say that f is a modular form of weight 2k and level Γ = Γ(N). Moreover, if

f∞(0) = 0, we say that f is cuspidal.

The space of modular (resp. cuspidal) forms of level Γ and weight 2k is denoted
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by M2k(Γ) (resp. M0
2k(Γ)) and we set

M(Γ) =
⊕
k≥0

M2k(Γ) M0(Γ) =
⊕
k≥0

M0
2k(Γ) (6.1.8)

IfN ′ is a multiple ofN , we have a morphismM(Γ(N))→M(Γ(N ′)) (resp. M0(Γ(N))→

M0(Γ(N ′))) . We define M (resp. M0) to be the direct limit

M = lim
−→
M(Γ(N)) M0 = lim

−→
M0(Γ(N)) (6.1.9)

In [10], Connes and Moscovici have introduced the algebra A(Γ) of Hecke operator

forms of level Γ along with a natural embedding H(Γ) ↪→ A(Γ) of the usual algebra

of Hecke operators H(Γ).

Definition 6.3. A Hecke operator form of level Γ is a function

F : Γ\GL+
2 (Q) −→M Γα 7→ Fα ∈M (6.1.10)

with finite support and satisfying the covariance condition

Fα|γ = Fαγ ∀ α ∈ GL+
2 (Q) γ ∈ Γ (6.1.11)

The Hecke operator form is said to be cuspidal if

Fα ∈M0 ∀ α ∈ GL+
2 (Q) (6.1.12)

The Hecke operator forms of level Γ form an algebra A(Γ) under the product

(F 1 ∗ F 2)α =
∑

α2α1=α

F 1
α1
· F 2

α2
|α1 F 1, F 2 ∈ A(Γ) (6.1.13)
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where α1, α2 ∈ GL+
2 (Q). Now, H(Γ) may be thought of as the algebra of functions

from the set of double cosets of Γ to C having finite support. Then H(Γ) embeds into

A(Γ) as

j : H(Γ) ↪→ A(Γ) j(h)α = h(ΓαΓ) α ∈ GL+
2 (Q) (6.1.14)

The cuspidal Hecke operators form an ideal in A(Γ), which we denote by A0(Γ). Also,

we note that M(Γ) has the structure of an A(Γ)-module given by

F ∗ f =
∑

α∈Γ\GL+
2 (Q)

Fα · f |α (6.1.15)

for F ∈ A(Γ), f ∈M(Γ). M0(Γ) is a submodule ofM(Γ) and the ideal A0(Γ) takes

all elements inM(Γ) toM0(Γ). Finally, if N ′ is a multiple of N , there exist natural

morphisms

f(N ′, N) : A(Γ(N)) −→ A(Γ(N ′)) f(M ′,M) : H(Γ(N)) −→ H(Γ(N ′)) (6.1.16)

and we can form the direct limit algebras

A = lim
−→
A(Γ(N)) H = lim

−→
H(Γ(N)) (6.1.17)

Finally, we recall the definition of the Hopf algebra H1 of Connes and Moscovici

that acts on the algebra A(Γ). This Hopf algebra H1 belongs to the family of algebras

{Hn}n≥1 defined by Connes and Moscovici in [12], where it is interpreted as the

“Hopf algebra of codimension one foliations”. The Hopf algebra H1 is the universal

enveloping algebra of the Lie algebra L1 with generators X, Y , δn, n ≥ 1, satisfying
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the relations

[Y,X] = X [Y, δn] = nδn [X, δn] = δn+1 [δk, δl] = 0 ∀ k, l ∈ N (6.1.18)

along with the coproducts

∆(X) = X ⊗ 1 + 1⊗X + δ1 ⊗ Y ∆(Y ) = Y ⊗ 1 + 1⊗ Y

∆(δ1) = δ1 ⊗ 1 + 1⊗ δ1

(6.1.19)

and the antipode

S(Y ) = −Y S(X) = −X + δ1Y S(δ1) = −δ1 (6.1.20)

For any f ∈Mk, the operator X is defined as

X(f) =
1

2πi

(
d

dz
f − (1/6)

d

dz
(log ∆)Y (f)

)
(6.1.21)

where Y is the grading operator Y (f) = k
2
f and ∆(z) is the modular discriminant

∆(z) = (2π)12q
∞∏
n=1

(1− qn)24 q = e2πiz (6.1.22)

which is a modular form of weight 12 and level Γ(1) = SL2(Z). It may be checked

that X defines an operator X :Mk →Mk+2. We set

X̃(f) = (2πi) ·X(f) (6.1.23)

Moreover, the operator X (and hence X̃) determines a derivation, called the Ramanu-

jan derivation. Now, given F ∈ A(Γ), H1 acts on A(Γ) as follows; for α ∈ G+
2 (Q)
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and F ∈ A(Γ);

X(F )α = X(Fα) Y (F )α = Y (Fα) δ1(F )α = µα · F (6.1.24)

where µα = (1/12πi) d
dz

(
log ∆|α

∆

)
. Note that µα measures the difference

µα · Y (f) = X(f)−X(f |kα−1)|k+2α (6.1.25)

whence it follows directly that µα = 0 for all α ∈ SL2(Z). For sake of convenience,

set

µ̃α = (2πi) · µα ∀ α ∈ G+
2 (Q) (6.1.26)

Remark: Notice that while the operators X and Y can be directly defined on a

modular form f ∈ M, the operators δn, n ≥ 1 cannot. The definition of δ1 only

makes sense when we apply it to a function from the set of cosets Γ\G+
2 (Q) to M.

Since µα = 0 for all α ∈ SL2(Z), the operator δ1 (and hence the operators δn,

inductively defined by the relation [X, δn] = δn+1) vanishes whenever we use a coset

representative Γα with α ∈ SL2(Z). It also follows that the algebra A(Γ) carries a

Hopf action of the finitely generated Hopf algebra h1, i.e. the universal enveloping

algebra of the Lie Algebra with two generators X, Y , with relation [Y,X] = X and

coproducts derived from H1 by setting all δn = 0.

150



6.2 The Enriched Archimedean complex with Hopf action

Let X(N), N ≥ 1 denote the N -th modular curve, which is the compactification of

Γ(N)\H. Now define

Ki,j,k
N =

⊕
l≥i−j−1

Ml(ΓN)⊗R
⊕

a≤b,a+b=j+1,|a−b|≤2k−i

(Ωa,b
X(N) + Ωb,a

X(N))R

(
1 + j − i

2

)
(6.2.1)

We define the two differentials, given f ⊗ ω ∈ Ki,j,k
N , we set

d′ : Ki,j,k
N −→ Ki+1,j+1,k+1

N (f ⊗ ω) 7→ f ⊗ d′(ω)

d′′ : Ki,j,k
N −→ Ki+1,j+1,k

N (f ⊗ ω) 7→ f ⊗ d′′(ω)
(6.2.2)

For any integers N,N ′ ≥ 1, we have the projection maps p : X(NN ′) → X(N). We

can define morphisms:

Ml(ΓN)⊗(Ωa,b
X(N)+Ωb,a

X(N))R

(
1 + j − i

2

)
→Ml(ΓNN ′)⊗(Ωa,b

X(NN ′)+Ωb,a
X(NN ′))R

(
1 + j − i

2

)
(6.2.3)

by tensoring pullback maps p∗ on differential forms with the inclusions Ml(ΓN) ↪→

Ml(ΓNN ′). Define Ki,j,k
en to be the direct limit of this system

Ki,j,k
en = lim

−→
N

Ki,j,k
N (6.2.4)

Definition 6.4. For a congruence subgroup Γ ⊂ SL2(Z), define Bi,j,k(Γ) to be the set

of all functions of finite support

F : Γ\G+
2 (Q) −→ Ki,j,k

en (6.2.5)
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satisfying the following covariance condition: If Fα =
∑m

l=1 fl ⊗ ωl ∈ Ki,j,k
en , then

Fαγ =
m∑
l=1

fl|γ ⊗ ωl (6.2.6)

where Fα denotes the function F evaluated on the coset Γα for some α ∈ G+
2 (Q).

Again, we can make Bi,j,k(Γ) into a complex by defining differentials

d′ : Bi,j,k(Γ) −→ Bi+1,j+1,k+1(Γ) d′(F )α = d′(Fα)

d′′ : Bi,j,k(Γ) −→ Bi+1,j+1,k(Γ) d′′(F )α = d′′(Fα)
(6.2.7)

Set Bi,j(Γ) = ⊕kBi,j,k(Γ) and B∗(Γ) = ⊕i+j=∗Bi,j(Γ). This gives us a complex

(B∗(Γ), d′ + d′′).

For sake of simplicity, we shall frequently use the expression fα ⊗ ωα to denote the

sum Fα =
∑k

l=1 fi ⊗ ωi.

Our next step is to define an algebra AT (Γ) which is a variant of the modular hecke

algebra A(Γ). We will show that B∗(Γ) is a module over AT (Γ) and that H1 acts on

both AT (Γ) and B∗(Γ) and that the action is well behaved (or “flat”) in a sense we

will make precise in Definition 6.12. First, we consider the multiplicative semigroup

consisting of all non negative powers of (2πi)−1 in C and denote this semigroup by

T+. Then R[T+] denotes the free R-module over T+, considered as a “semigroup ring”

(See Remark 6.9 for an explanation of why we restrict ourselves to this semigroup).

Definition 6.5. Let Γ ⊂ SL2(Z) be a congruence subgroup. Denote by AT (Γ) the set

of all functions of finite support

F : Γ\G+
2 (Q) −→M⊗R R[T+] (6.2.8)
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satisfying the following covariance condition: If Gα =
∑m

l=1 gl ⊗ εl, then, for any

γ ∈ Γ,

Gαγ =
m∑
l=1

gl|γ ⊗ εl (6.2.9)

For simplicity, we will forgo the summation signs and write the sum Gα =
∑m

l=1 gl⊗εl

simply as gα ⊗ εα. Also, we define the submodule A0
T (Γ) of all functions in AT (Γ)

whose values lie in the cuspidal part M0 ⊗ R[T+].

Proposition 6.6. (1) AT (Γ) is an associative algebra: Given F, F ′ ∈ AT (Γ), with

Fρ = fρ ⊗ ερ and Gρ = f ′ρ ⊗ ε′ρ for all ρ ∈ G+
2 (Q), the product structure is given by:

(F ∗ F ′)α =
∑

β∈Γ\G+
2 (Q)

(fβ · f ′αβ−1|β)⊗ εβε′αβ−1 (6.2.10)

(2) The Hopf Algebra H1 acts on AT (Γ) as follows:

X(F )α = X̃(fα)⊗ (2πi)−1εα Y (F )α = Y (fα)⊗ εα

δ1(F )α = µ̃α · fα ⊗ (2πi)−1εα

(6.2.11)

Moreover, the action of H1 on AT (Γ) is flat in the sense that, given F ,F ′ ∈ AT (Γ)

and h ∈ H1, with ∆(h) =
∑
h(1) ⊗ h(2), we have

h(F ∗ F ′) =
∑

h(1)(F ) ∗ h(2)(F
′) (6.2.12)

Proof. (1) We consider the moduleM⊗R[T+] and the following maps: given f ∈M,

ε ∈ R[T+] and ρ ∈ G+
2 (Q), we let

ψf⊗ε :M⊗ R[T+] −→M⊗ R[T+] f ′ ⊗ ε′ 7→ f · f ′ ⊗ εε′

Tρ :M⊗ R[T+] −→M⊗ R[T+] f ′ ⊗ ε′ 7→ f ′|ρ⊗ ε′
(6.2.13)
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We choose γ ∈ Γ, it now follows:

(F ∗ F ′)γα =
∑

β∈Γ\G+
2 (Q)(fβ · f ′γαβ−1|β)⊗ εβε′γαβ−1

=
∑

β∈Γ\G+
2 (Q) ψfβ⊗ε ◦ Tβ(f ′γαβ−1 ⊗ ε′γαβ−1)

=
∑

β∈Γ\G+
2 (Q) ψfβ⊗ε ◦ Tβ(f ′αβ−1 ⊗ ε′αβ−1)

= (F ∗ F ′)α

(6.2.14)

For any β ∈ G+
2 (Q), it follows that:

(fγβ · f ′αβ−1γ−1|γβ)⊗ εγβε′αβ−1γ−1 = ψfγβ⊗εγβ ◦ Tγβ(f ′αβ−1γ−1 ⊗ ε′αβ−1γ−1)

= ψfβ⊗εβ ◦ Tγβ ◦ Tγ−1(f ′αβ−1 ⊗ ε′αβ−1)

= (fβ · f ′αβ−1|β)⊗ εβε′αβ−1

(6.2.15)

Hence the expression for (F ∗F ′)α is independent of the choice of coset representatives

β. Finally, we check the covariance condition:

(F ∗ F ′)αγ =
∑

β∈Γ\G+
2 (Q)(fβ · f ′αγβ−1|β)⊗ εβε′αγβ−1

=
∑

δ∈Γ\G+
2 (Q)(fδγ · f ′αδ−1|δγ)⊗ εδγε′αδ−1 (β = δγ)

=
∑

δ∈Γ\G+
2 (Q) ψfδγ⊗εδγ ◦ Tδγ(f ′αδ−1 ⊗ ε′αδ−1)

=
∑

δ∈Γ\G+
2 (Q)(fδ · f ′αδ−1)|γ ⊗ εδε′αδ−1

(6.2.16)

(2) We check this on the generators. The Lie Algebra relations [Y,X] = X, [Y, δ1] = δ1

and [δk, δl] = 0 ∀ k, l ∈ N may be checked directly as in Proposition 6.10 below. We
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check the coproduct relations. Choose F , F ′ ∈ AT (Γ). Then

X(F ∗ F ′)α =
∑

β∈Γ\G+
2 (Q) X̃(fβ · f ′αβ−1|β)⊗ (2πi)−1εβε

′
αβ−1

=
∑

β∈Γ\G+
2 (Q) X̃(fβ) · f ′αβ−1|β ⊗ (2πi)−1εβε

′
αβ−1

+
∑

β∈Γ\G+
2 (Q) fβ · X̃(f ′αβ−1 |β)⊗ (2πi)−1εβε

′
αβ−1

= (X(F ) ∗ F ′)α +
∑

β∈Γ\G+
2 (Q)(fβ · X̃(f ′αβ−1)|β)⊗ (2πi)−1εβε

′
αβ−1

−
∑

β∈Γ\G+
2 (Q)(fβ(µ̃β−1 · Y (f ′αβ−1))|β)⊗ (2πi)−1εβε

′
αβ−1

= (X(F ) ∗ F ′)α + (F ∗X(F ′))α

+
∑

β∈Γ\G+
2 (Q)(µ̃β · fβ) · Y (f ′αβ−1)|β ⊗ (2πi)−1εβε

′
αβ−1

(as µ̃β−1β = 0 = µ̃β−1|β + µ̃β)

= (X(F ) ∗ F ′)α + (F ∗X(F ′))α + (δ1(F ) ∗ Y (F ′))α

(6.2.17)

It can be easily checked that both Y and δ1 are derivations on the algebra AT (Γ) and

hence the action of H1 on AT (Γ) is flat.

Corollary 6.7. (1) A0
T (Γ) is an ideal in AT (Γ), which we shall refer to as the cuspidal

ideal.

(2) The cuspidal ideal A0
T (Γ) is invariant under the action of H1.

Proof. (1) follows directly from the definition of the product. From [10], we know

that X̃ preserves cuspidal modular forms. From the expression of the action of X on

AT (Γ), it is clear that the H1 preserves A0
T (Γ).

Proposition 6.8. Let Γ be a congruence subgroup of SL2(Z) and let G ∈ A(Γ),

F ∈ B∗(Γ). Let Gα = gα ⊗ εα for any α ∈ G+
2 (Q). Let F ∈ Bi,j,k(Γ) for some
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i, j, k ∈ Z and let Fα = fα⊗ωα. Then, we have a module action of A(Γ) on B∗(Γ) as

(G ∗ F )α =
∑

β∈Γ\G+
2 (Q)

(Gβ · fαβ−1|β)⊗ εβωαβ−1 (6.2.18)

where the right hand side of (6.2.18) belongs to the sum Bi,j,k(Γ) ⊕ Bi+2,j,k+1(Γ) ⊕

Bi+4,j,k+2(Γ) ⊕ . . . . (It is understood that if the summand Bi+2l,j,k+l(Γ) vanish, the

corresponding term on the right hand side is taken to be zero).

Proof. We consider the tensor product M⊗ ΩT , where ΩT is the direct limit of the

sum of all twisted real differentials, i.e.

ΩT = lim
−→
N

(Ωa,b
X(N) + Ωb,a

X(N))R ⊗R R[T+] (6.2.19)

For any α ∈ G+
2 (Q) and any function g ⊗ ε ∈M⊗ R[T+], we define functions

ψg⊗ε :M⊗ ΩT →M⊗ ΩT f ⊗ ω 7→ g · f ⊗ εω

Tα :M⊗ ΩT →M⊗ ΩT f ⊗ ω 7→ f |α⊗ ω
(6.2.20)

To prove that the module action is well defined, we check that, for γ ∈ Γ,

(G ∗ F )γα =
∑

β∈Γ\G+
2 (Q)(gβ · fγαβ−1|β)⊗ εβωγαβ−1

=
∑

β∈Γ\G+
2 (Q) ψgβ⊗εβ ◦ Tβ(fγαβ−1 ⊗ ωγαβ−1)

=
∑

β∈Γ\G+
2 (Q) ψgβ⊗εβ ◦ Tβ(fαβ−1 ⊗ ωαβ−1)

=
∑

β∈Γ\G+
2 (Q) gβ · fαβ−1|β ⊗ εβωαβ−1 = (G ∗ F )α

(6.2.21)
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This action is also independent of the choice of coset representatives β, i.e.

(gγβ · fαβ−1γ−1|γβ)⊗ εγβωαβ−1γ−1 = (gβ · fαβ−1γ−1|γβ)⊗ εβωαβ−1γ−1

= ψgβ⊗εβ ◦ Tγβ(fαβ−1γ−1 ⊗ ωαβ−1γ−1)

= ψgβ⊗εβ ◦ Tγβ ◦ Tγ−1(fαβ−1 ⊗ ωαβ−1)

= ψgβ⊗εβ ◦ Tβ(fαβ−1 ⊗ ωαβ−1)

= gβ · fαβ−1|β ⊗ εβωαβ−1

(6.2.22)

Finally, we check the covariance condition, for γ ∈ Γ,

(G ∗ F )αγ =
∑

β∈Γ\G+
2 (Q)(gβ · fαγβ−1|β ⊗ εβωαγβ−1)

=
∑

δ∈Γ\G+
2 (Q)(gδγ · fαδ−1 |δγ ⊗ εδγωαδ−1) (β = δγ)

=
∑

δ∈Γ\G+
2 (Q) ψgδγ⊗εδγ (fαδ−1|δγ ⊗ ωαδ−1)

=
∑

δ∈Γ\G+
2 (Q)(gδ · fαδ−1 |δ)|γ ⊗ ωαδ−1

(6.2.23)

Note that the product lies entirely in the direct sum Bi,j,k(Γ) ⊕ Bi+2,j,k+1(Γ) ⊕ . . . ,

i.e. the direct sum is infinite in one direction only. This is because multiplication by

an element of AT (Γ) cannot increase the twist.

Remark 6.9. By looking at the proof of Proposition 6.8, we can see why the semi-

group T+ consisting of all non-negative powers of (2πi)−1 in Definition 6.5 instead

of the full cyclic group of all powers of (2πi)−1. If we were to allow multiplication

by negative powers of (2πi)−1, say, for instance, by (2πi), we could define a map

Bi,j,k(Γ) −→ Bi−2,j,k−1(Γ). Unfortunately, however, such a map does not commute

with differentials d′ and d′′. Hence, we exclude negative powers of (2πi)−1 and con-

sider only the semigroup T+.

Now, we will define an action of the Lie Algebra L1 as defined in Section 6.1, on the

terms Bi,j(Γ). This action extends to an action of the universal enveloping algebra
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on Bi,j(Γ).

Proposition 6.10. B∗(Γ) is a module over the universal enveloping algebra of the

Lie algebra L1.

Proof. Let F ∈ Bi,j,k(Γ) and α ∈ G+
2 (Q). We define the following operators

X : Bi,j,k(Γ)→ Bi+2,j,k+1(Γ) X(F )α = X̃(fα)⊗ (2πi)−1ωα

Y : Bi,j,k(Γ) −→ Bi,j,k(Γ) Y (F )α = Y (fα)⊗ ωα

δ1 : Bi,j,k(Γ) −→ Bi+2,j,k+1(Γ) δ1(F )α = µ̃α · fα ⊗ (2πi)−1ωα

(6.2.24)

where Fα = fα ⊗ ωα. We obtain

Y X(F )α = Y (X̃(fα))⊗ (2πi)−1ωα

XY (F )α = X̃(Y (fα))⊗ (2πi)−1ωα

(6.2.25)

and hence it follows that [Y,X] = X. Similarly, we can check that [Y, δ1] = δ1. The

action of the operators δn for n > 1 is determined by the relation [X, δn] = δn+1. Note

that the relation

δn(Fα) =
∑

X̃n−1(µ̃α) · fα ⊗ (2πi)−nωα ∈ Bi+2n,j,k+n(Γ) (6.2.26)

holds for n = 1. If (6.2.26) holds for n, then

δn+1(F )α = Xδn(F )α − δnX(F )α

= X(X̃n−1(µ̃α) · fα ⊗ (2πi)−nωα)− (X̃n−1(µ̃α) · X̃(fα)⊗ (2πi)−n−1ωα)

= X̃n(µ̃α) · fα ⊗ (2πi)−n−1ωα

(6.2.27)

which proves the result for all n, by induction. From the expression, it is now obvious

that [δk, δl] = 0 for all k, l ∈ N. Hence B∗(Γ) is a module over the universal enveloping
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algebra of L1.

Remark Note that the operator X of Proposition 6.10 is a “composite” of the mon-

odromy operator N on the archimedean complex and the Ramanujan derivation X on

modular forms. The definiton of the operator Y reflects both the grading operator on

modular forms and −Φ on the archimedean complex (Φ being the Frobenius), which

is defined to be Φ(x) =
(

1+j−i
2

)
for x ∈ Ki,j,k, where the Ki,j,k’s are the terms of the

original archimedean complex we worked with in Chapter 4. One can check that the

operators Φ and N on Consani’s complex satisfy the relation [−Φ, N ] = N , which

leads to the comparison with the commutator relation [Y,X] = X for operators X

and Y on modular forms as explained above.

Corollary 6.11. The action of the operators X, Y and δn, n ≥ 1 commutes with the

differentials d′ and d′′.

Proof. Take F ∈ Bi,j,k(Γ) with Fα = fα ⊗ ωα for α ∈ G+
2 (Q). Then

(d′X(F ))α = d′(X(F )α) = X̃(fα)⊗ (2πi)−1d′(ωα) = X(d′(F ))α ∈ Bi+2,j,k+1(Γ)

(6.2.28)

and the same commutation relation holds for Y and δn, n ≥ 1.

Definition 6.12. Let M be a module over an algebra A. Suppose that H is a Hopf

algebra acting on both A and M . Then the action of H on A is said to be flat if

h(a1a2) =
∑

h(1)(a1)h(2)(a2) ∆(h) =
∑

h(1) ⊗ h(2) ∀ h ∈ H, a1, a2 ∈ A
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The action of H on the system (A,M) is said to be flat if

h(am) =
∑

h(1)(a)h(2)(m) ∆(h) =
∑

h(1) ⊗ h(2) ∀ h ∈ H, a ∈ A,m ∈M

(6.2.29)

In Proposition 6.10 we have already shown that the Hopf algebra H1 acts on B∗(Γ).

We know from Proposition 6.6 that the Hopf algebra H1 has a flat action on the

Hecke algebra AT (Γ) and we proved in Proposition 6.8 that B∗(Γ) is a module over

AT (Γ). We will now show that the action of H1 on the system (AT (Γ),B∗(Γ)) is flat,

following Definition 6.12.

Proposition 6.13. The action of H1 on the system (AT (Γ),B∗(Γ)) is flat.

Proof. Choose F ∈ Bi,j,k(Γ) and let G ∈ AT (Γ). Let Fα = fα⊗ ωα and Gα = gα⊗ εα

for α ∈ G+
2 (Q). By definition,

X(G ∗F )α =
∑

β∈Γ\G+
2 (Q)

X̃(gβ · fαβ−1 |β)⊗ (2πi)−1εβωαβ−1 ∈
∞⊕
l=1

Bi+2l,j,k+l(Γ) (6.2.30)

Since X̃ is a derivation on M, the right hand side of (6.2.30) is equal to

∑
β∈Γ\G+

2 (Q)

X̃(gβ)·fαβ−1|β⊗(2πi)−1εβωαβ−1+
∑

β∈Γ\G+
2 (Q)

(gβ·X̃(Fαβ−1|β))⊗(2πi)−1εβωαβ−1

(6.2.31)

= (X(G) ∗ F )α +
∑

β∈Γ\G+
2 (Q)(gβ · X̃(fαβ−1)|β)⊗ (2πi)−1εβωαβ−1

−
∑

β∈Γ\G+
2 (Q)(gβ · (µ̃β−1 · Y (fαβ−1))|β)⊗ (2πi)−1εβωαβ−1

= (X(G) ∗ F )α + (G ∗X(F ))α

+
∑

β∈Γ\G+
2 (Q)((µ̃β · gβ) · Y (fαβ−1)|β)⊗ (2πi)−1εβωαβ−1

= (X(G) ∗ F )α + (G ∗X(F ))α + (δ1(G) ∗ Y (F ))α

(6.2.32)
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The result follows easily for the coproducts ∆(Y ) = Y ⊗ 1 + 1 ⊗ Y and ∆(δ1) =

δ1 ⊗ 1 + 1⊗ δ1.

Corollary 6.14. (1) AT (Γ) also acts on the right of B∗(Γ) as follows; For G ∈ AT (Γ)

and F ∈ Bi,j,k with Gρ = gρ ⊗ ερ, Fρ = fρ ⊗ ωρ for any ρ ∈ G+
2 (Q),

(F ∗G)α =
∑

α∈Γ\G+
2 (Q)

(fβ · gαβ−1|β)⊗ ωβεαβ−1 (6.2.33)

(2) The right module structure of B∗(Γ) over AT (Γ) is also flat with respect to the

action of H1, i.e. for any h ∈ H1, F ∈ B∗(Γ) and G ∈ AT (Γ), we have

h(F ∗G) =
∑

h(1)(F ) ∗ h(2)(G) if ∆(h) =
∑

h(1) ⊗ h(2) (6.2.34)

Proof. It can be checked directly that both expressions are well defined and that the

action of the Hopf algebra is flat.

It follows that B∗(Γ) is actually a bimodule over AT (Γ). We will use this fact in the

next section.

Finally, we show that, by “restricting” the product onAT (Γ) as defined in Proposition

6.6, we can define an action of the smaller Hopf algebra h1 (i.e. the universal envelop-

ing algebra of the Lie algebra l1 with two generators X, Y satisfying [Y,X] = X, and

with coproducts ∆(X) = 1 ⊗ X + X ⊗ 1 and ∆(Y ) = 1 ⊗ Y + Y ⊗ 1) on AT (Γ).

Further, we can make B∗(Γ) into a module over AT (Γ) in a way such that h1 has a

flat action on the system (AT (Γ),B∗(Γ)).
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Proposition 6.15. (1) Let F ,F ′ ∈ AT (Γ). Suppose that Fα = fα⊗εα, F ′α = f ′α⊗ε′α,

for any α ∈ G+
2 (Q). Then AT (Γ) becomes an algebra under the product

(F ∗ F )α =
∑

β∈Γ\SL2(Z)

(fβ · f ′αβ−1|β)⊗ εβε′αβ−1 (6.2.35)

Whenever we use the product of (6.2.35), we will refer to the algebra AT (Γ) as ArT (Γ).

(2) We define the operators X and Y on ArT (Γ) as

X(F )α = X̃(fα)⊗ (2πi)−1εα Y (F )α = Y (fα)⊗ εα (6.2.36)

Then both X and Y are derivations on ArT (Γ) and the above defines a flat action of

the Hopf algebra h1 on ArT (Γ).

Proof. (1) follows in the exact same manner as the proof of Proposition 6.6(1). To

prove (2), we note that X(f ′αβ−1|β) = X(f ′αβ−1)|β because µβ−1 = 0 (as β ∈ SL2(Z)).

Hence

X(F ∗ F ′)α =
∑

β∈Γ\SL2(Z) X̃(fβ · f ′αβ−1 |β)⊗ (2πi)−1εβε
′
αβ−1

=
∑

β∈Γ\SL2(Z) X̃(fβ) · f ′αβ−1 ⊗ (2πi)−1εβε
′
αβ−1

+
∑

β∈Γ\SL2(Z) fβ · X̃(fαβ−1)|β ⊗ (2πi)−1εβε
′
αβ−1

= (X(F ) ∗ F ′)α + (F ∗X(F ′))α

(6.2.37)

We can also check directly that Y is a derivation.

Whenever we use the product of (6.2.35), we will refer to the algebra AT (Γ) as ArT (Γ).

Proposition 6.16. (1) Let G ∈ ArT (Γ) and F ∈ B∗(Γ). Let Gα = gα ⊗ εα and
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Fα = fα ⊗ ωα for α ∈ G+
2 (Q). We set

(G ∗ F )α =
∑

β∈Γ\SL2(Z)

gβ · fαβ−1|β ⊗ εβωαβ−1 (6.2.38)

This makes B∗(Γ) a module over ArT (Γ). With the module action of (6.2.38), we will

refer to B∗(Γ) as B∗r(Γ).

(2) For F ∈ Bi,j,kr (Γ) ⊂ B∗r(Γ), define operators X and Y as

X(F )α = X̃(fα)⊗ (2πi)−1ωα Y (F )α = Y (fα)⊗ ωα (6.2.39)

with the right hand side lying in the direct sum Bi,j,kr (Γ) ⊕ Bi+2,j,k+1
r (Γ) ⊕ . . . . This

defines a flat action of h1 on the system (ArT (Γ),B∗r(Γ)).

Proof. The proof of (1) is analogous to that of Proposition 6.15(1). (2) also follows

similarly; using again the fact that X̃(f ′αβ−1|β) = X̃(f ′αβ−1)|β, since β ∈ SL2(Z).

With the module action of (6.2.38), we will refer to B∗(Γ) as B∗r(Γ).

Remark We recall that the universal elliptic curve E, with a map E → H to the

upper half plane, is defined by letting the fibre over z ∈ H be the elliptic curve

C/Λz, Λz being the lattice {Z + Zz}. When Γ = Γ(N) is a congruence subgroup

of SL2(Z) with N ≥ 3, it is known that Γ acts freely on E and one deduces a

morphism E(Γ) → Y (Γ) = Γ\H The universal elliptic curve E(Γ) of level Γ can be

compactified to define E(Γ) which maps to the modular curve X(Γ). The results of

this section, as well as those of the next, may be carried over to the context of the

curves E(Γ)→ X(Γ), by pulling back the line bundle of modular forms from X(Γ) to

E(Γ) and by working with the module of relative differentials Ω∗,∗E(Γ)/X(Γ).
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6.3 Extension of Rankin Cohen brackets

Our goal in this section is to define “Rankin Cohen brackets” RCn of any order n ≥ 1

on B∗(Γ):

RCn : B∗(Γ)⊗ B∗(Γ) −→ AT (Γ)(1) (6.3.1)

where AT (Γ)(1) = AT (Γ)(2πi). We start with the definition of the first Rankin Cohen

bracket. If f and g are modular forms of weight k and l respectively, the first Rankin

Cohen bracket is defined as

RC1(f, g) = X(f)Y (g)− Y (f)X(g) (6.3.2)

In [10], Connes and Moscovici have shown that the extension of the first Rankin

Cohen bracket to the modular Hecke Algebra A(Γ) is defined by the generator of

the transverse fundamental class [F ] ∈ HC2(H1), which is a class in Hopf cyclic

cohomology. For the definition and properties of Hopf cyclic cohomology, see [11] or

the Appendix to [10]. Here the class F is given by

F = X ⊗ Y − Y ⊗X − δ1Y ⊗ Y (6.3.3)

We set δ′2 = δ2−(1/2)δ2
1 in the Hopf AlgebraH1. We will now describe the action of δ′2

on the algebra AT (Γ) and on B∗(Γ) more explicitly. For this, we set ω4 = − 10
(2πi)4

G4,

where G4 is the classical Eisenstein series

G4(z) =
∑

(m,n) 6=(0,0)

1

(mz + n)4
(6.3.4)

We can think of ω4 as an element of AT (Γ), by choosing a constant function mapping

all cosets in Γ\G+
2 (Q) to (2πi)ω4 ⊗ (2πi)−1.
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Lemma 6.17. (1) The action of δ′2 on AT (Γ) is an inner derivation, implemented

by ω4 ∈ AT (Γ), i.e.

δ′2(G) = [G,ω4] for any G ∈ AT (Γ) (6.3.5)

(2) The action of δ′2 on B∗(Γ) is also implemented by ω4, i.e. given F ∈ B∗(Γ) we

have

δ′2(F ) = [F, ω4] (6.3.6)

(The right hand side of (6.3.6) is well defined because B∗(Γ) is a bimodule over

AT (Γ).)

(3) The action of δ′2 on ArT (Γ) is zero.

Proof. (3) follows directly from the fact that all δn, n ≥ 0 act as 0 on ArT (Γ). Now,

from the proof of Proposition 10 of [10], it follows that, for any γ ∈ G+
2 (Q)

(
X̃(µ̃γ)−

µ̃2
γ

2

)
· f = 2πi(ω4 · f − f · ω4|γ) (6.3.7)

Also, from the expression for δn given in the proof of Proposition 6.10, it follows that,

for F ∈ B∗(Γ) with Fρ = fρ ⊗ ωρ for any ρ ∈ G+
2 (Q);

δ′2(F )α = δ2(F )α − (1/2)δ2
1(F )α = (X̃(µ̃α) · fα −

µ̃2
α

2
· fα)⊗ (2πi)−2ωα (6.3.8)

Then both (1) and (2) follow from (6.3.8) exactly as in Proposition 10 of [10].

In [18], Consani has defined a pairing on the terms of the archimedean complex

taking values in R(1). We will now generalize this pairing using Rankin Cohen brack-

ets, and this pairing will, in fact, take values in the twisted module AT (Γ)(1). We
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will also define the pairing in the simpler case of B∗r(Γ), with the pairing taking values

in ArT (Γ)(1).

Set, for m ∈ Z,

ε(m) = (−1)
m(m+1)

2 (6.3.9)

and, for a differential form ω of type (a, b), we set

C(ω) = (
√
−1)a−b (6.3.10)

For F1, F2 in A(Γ), the first Rankin Cohen bracket is given by

RC1(F1, F2) = X(F1) ∗ Y (F2)− Y (F1) ∗X(F2)− δ1Y (F1) ∗ Y (F2) (6.3.11)

This leads us to the introduction of a pairing

RC1,0 : B−i−2,−j,k−1
r (Γ)⊗ Bi,j,k+i

r (Γ) −→ ArT (Γ)(1) (6.3.12)

which is defined as follows. Let F ∈ B−i−2,−j,k−1
r (Γ) and F ′ ∈ Bi,j,k+i

r (Γ) with Fρ =

fρ ⊗ ωρ and F ′ρ = f ′ρ ⊗ ω′ρ for any ρ ∈ G+
2 (Q). Then, for any α ∈ G+

2 (Q),

RC1,0(F, F ′)α

= ε(1− j)(−1)k
∑

β∈Γ\SL2(Z)(X̃(fβ)Y (f ′αβ−1)|β)⊗ (2πi)−2
∫
ωβ ∧ Cω′αβ−1

−ε(1− j)(−1)k−1
∑

β∈Γ\SL2(Z)(Y (fβ)X̃(fαβ−1)|β)⊗ (2πi)−2
∫
ωβ ∧ Cω′αβ−1

−ε(1− j)(−1)k
∑

β∈Γ\SL2(Z)(µ̃β · Y (fβ) · (Y (f ′αβ−1)|β))⊗ (2πi)−2
∫
ωβ ∧ Cω′αβ−1

(6.3.13)

The integral in the expression above is well defined on the direct limit since the

integral of a top dimensional differential form is left unchanged by pullback maps.
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We can also define a pairing:

RC1,1 : B−i,−j,kr (Γ)⊗ Bi−2,j,k+i−1
r (Γ) −→ ArT (Γ)(1) (6.3.14)

as follows: Given F ∈ B−i,−j,kr (Γ) and F ′ ∈ Bi−2,j,k+i−1
r (Γ), we have

RC1,1(F, F ′)α

= ε(1− j)(−1)k+1
∑

β∈Γ\SL2(Z)(X̃(fβ)Y (f ′αβ−1)|β)⊗ (2πi)−2
∫
ωβ ∧ Cω′αβ−1

−ε(1− j)(−1)k
∑

β∈Γ\SL2(Z)(Y (fβ)X̃(fαβ−1)|β)⊗ (2πi)−2
∫
ωβ ∧ Cω′αβ−1

−ε(1− j)(−1)k+1
∑

β∈Γ\SL2(Z)(µ̃β · Y (fβ) · (Y (f ′αβ−1)|β))⊗ (2πi)−2
∫
ωβ ∧ Cω′αβ−1

(6.3.15)

Extending by zero, we have a first Rankin Cohen bracket

RC1 : (B−i−2,−j,k−1
r (Γ)⊕ B−i,−j,kr (Γ))⊗ (Bi−2,j,k+i−1

r (Γ)⊕ Bi,j,k+i
r (Γ)) −→ ArT (Γ)(1)

In general, for the n-th Rankin Cohen bracket, we will have n+ 1 distinct pairings

RCn,p : B−i−2(n−p),−j,k−(n−p)
r (Γ)⊗ Bi−2p,j,k+i−p

r (Γ) −→ ArT (Γ)(1) p = 0, 1, 2, ..., n

(6.3.16)

and we will extend by zero to define

RCn :
n⊕
p=0

B−i−2p,−j,k−p
r (Γ)⊗

n⊕
p=0

Bi−2p,j,k+i−p
r (Γ) −→ ArT (Γ)(1) (6.3.17)

We also have Rankin Cohen brackets

RCn :
n⊕
p=0

B−i−2p,−j,k−p(Γ)⊗
n⊕
p=0

Bi−2p,j,k+i−p(Γ) −→ AT (Γ)(1) (6.3.18)

First we consider the case of B∗r(Γ). In the previous section, we have shown that
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B∗r(Γ) is a bimodule over ArT (Γ) and that there is a flat action of h1 on the sys-

tem (ArT (Γ),B∗r(Γ)). Hence, following [9, (1.5)], the n-th Rankin Cohen bracket

is defined as follows: Let p ∈ {0, 1, 2, ..., n}, and let F ∈ B−i−2(n−p),−j,k−(n−p)
r (Γ),

F ′ ∈ Bi−2p,j,k+i−p
r (Γ), and let Fρ = fρ ⊗ ωρ, F ′ρ = f ′ρ ⊗ ω′ρ for any ρ ∈ G+

2 (Q). Then,

for any α ∈ G+
2 (Q),

RCn,p(F, F ′)α =
∑

β∈Γ\SL2(Z)

∑n
l=0 ε(1− j)(−1)k−n+p+l((

S(X̃)l

l!
(2Y + l)n−l(fβ)

)
·
(
X̃n−l

(n−l)!(2Y + n− l)l(f ′αβ−1)
)
|β
)
⊗ (2πi)−n−1

∫
ωβ ∧ Cω′αβ−1

(6.3.19)

where S is the antipode of the Hopf algebra and (Y + K)L = (Y + K)(Y + K −

1)...(Y +K −L+ 1). Extending by zeroes, we can define the Rankin Cohen brackets

RCn for all n.

Proposition 6.18. Choose u ∈ ArT (Γ) such that u is invertible and suppose that

X(u) = 0 Y (u) = 0 δ1(u−1δ1(u)) = 0 δ′2(u) = 0

1. For any n and any elements F , F ′ ∈ B∗r(Γ), we have

RCn(Fu, F ′) = RCn(F, uF ′)

RCn(uF, F ′) = uRCn(F, F ′) RCn(F, F ′u) = RCn(F, F ′)u
(6.3.20)

2. Let αu be the inner automorphism defined by u ∈ ArT (Γ); then

RCn(αu(F ), αu(F
′)) = αu(RCn(F, F ′)) (6.3.21)

Proof. Note that since u is an invertible element of ArT (Γ), for any ρ ∈ G+
2 (Q), we

must have uρ = gρ ⊗ 1, because R[T+] contains only non negative powers of (2πi)−1.
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Hence, if we choose F ∈ Bi,j,kr (Γ), both u∗F and αu(F ) lie in the same Bi,j,kr (Γ). The

result now follows exactly as in the proof of [9, Lemma 2].

We now proceed to the general case, where we consider the action of the larger Hopf

algebra H1 on AT (Γ). For any a ∈ AT (Γ), let us denote by La (resp. Ra) the operator

of left (resp. right) multiplication by a on B∗(Γ) and, by abuse of notation, also on

AT (Γ) itself. Recall that we can think of ω4 as an element of AT (Γ), by choosing a

constant function mapping all cosets in Γ\G+
2 (Q) to (2πi)ω4 ⊗ (2πi)−1. Also, define

an operator N on both AT (Γ) and B∗(Γ) as: Given F ∈ AT (Γ) and G ∈ B∗(Γ) with

Fρ = fρ ⊗ ερ and Gρ = gρ ⊗ ωρ for any ρ ∈ G+
2 (Q), set

N(G)ρ = gρ ⊗ (2πi)−1ωρ N(F )ρ = fρ ⊗ (2πi)−1ερ (6.3.22)

Note that if G ∈ Bi,j,k(Γ), N(G) ∈ Bi+2,j,k+1(Γ) and N(G) is understood to be zero

if Bi+2,j,k+1(Γ) = 0.

Define the sequences {An}n≥−1, {Bn}n≥0 as:

A−1 = 0 A0 = 1 B0 = 1 B1 = X

An+1 = S(X)An − nRω4

(
Y − n−1

2

)
An−1N Bn+1 = XBn − nLω4

(
Y − n−1

2

)
Bn−1N

These sequences differ from those of [9] in the use of the extra operator N . The

operator N makes sure that applying either An or Bn to an element of B∗(Γ) reduces

the twist by n. With this adjustment, we can, once again, define Rankin Cohen

brackets,

RCn,p : B−i−2(n−p),−j,k−(n−p)(Γ)⊗ Bi−2p,j,k+i−p(Γ) −→ AT (Γ)(1) p = 0, 1, 2, ..., n

(6.3.23)
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by the formula: Given F ∈ B−i−2(n−p),−j,k−(n−p)(Γ), F ′ ∈ Bi−2p,j,k+i−p(Γ), and let

Fρ = fρ⊗ωρ, F ′ρ = f ′ρ⊗ω′ρ for any ρ ∈ G+
2 (Q). Also, suppose that, for any 0 ≤ l ≤ n,

(
Al
l!

(2Y + l)n−l
)

(F )ρ = gρ ⊗ (2πi)−lωρ(
Bn−l
(n−l)!(2Y + n− l)l

)
(F ′)ρ = g′ρ ⊗ (2πi)−n+lω′ρ

(6.3.24)

Then, for any α ∈ G+
2 (Q),

RCn,p(F, F
′)α =

∑
β∈Γ\SL2(Z)

n∑
l=0

ε(1− j)(−1)k−n+p+lgβ · g′αβ−1|β ⊗ (2πi)−n−1
∫
ωβ ∧ Cω′αβ−1

(6.3.25)

Extending by zeroes, we can define the full Rankin Cohen brackets:

RCn :
n⊕
p=0

B−i−2p,−j,k−p(Γ)⊗
n⊕
p=0

Bi−2p,j,k+i−p(Γ) −→ AT (Γ)(1) (6.3.26)

Now, as in [9, Lemma 2], we can prove:

Proposition 6.19. Let the Hopf algebra H1 act on B∗(Γ) as above, such that δ′2 is

implemented by the inner derivation corresponding to ω4 ∈ AT (Γ). Further, choose

an invertible u ∈ AT (Γ) and set µ = u−1δ1(u). Then

X(u) = 0 Y (u) δn(u) = 0 n ∈ N (6.3.27)

1. For any n and any elements F , F ′ ∈ B∗(Γ), we have

RCn(Fu, F ′) = RCn(F, uF ′)

RCn(uF, F ′) = uRCn(F, F ′) RCn(F, F ′u) = RCn(F, F ′)u
(6.3.28)
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2. Let αu be the inner automorphism defined by u ∈ AT (Γ); then

RCn(αu(F ), αu(F
′)) = αu(RCn(F, F ′)) (6.3.29)

Proof. As explained before in the proof of Proposition 6.18, u being invertible, if

F ∈ Bi,j,k(Γ), both u ∗F and αu(F ) lie in Bi,j,k(Γ). The result now follows exactly as

in the proof of [9, Lemma 7].
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Math. J. 61 (1990), no. 1, 133–155.

[29] Hartshorne, Robin: Algebraic geometry. Graduate Texts in Mathematics, No.

52. Springer-Verlag, New York-Heidelberg, 1977.

174



[30] Karoubi, Max: Homologie cyclique et K-théorie. Astérisque No. 149 (1987).
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