Automorphism Group of Blow-ups of CP^k

Turgay Bayraktar
Complex and Non-Archimedean Dynamics

December 11, 2012
This is a joint work with Serge Cantat
Let X be a compact Kähler manifold of dimension k.

Examples: Complex projective space \mathbb{P}^k, Complex torus \mathbb{C}^k/Λ, $K3$ surface etc..
Compact Kähler manifolds

Let X be a compact Kähler manifold of dimension k.

Examples: Complex projective space \mathbb{P}^k, Complex torus \mathbb{C}^k/Λ, $K3$ surface etc..

$Pic(X)$ denotes the Picard group of X that is isomorphism classes of line bundles on X.
Compact Kähler manifolds

Let X be a compact Kähler manifold of dimension k.

Examples: Complex projective space \mathbb{P}^k, Complex torus \mathbb{C}^k/Λ, $K3$ surface etc..

$Pic(X)$ denotes the Picard group of X that is isomorphism classes of line bundles on X.

We denote the Chern map by

$$c_1 : Pic(X) \to H^2(X, \mathbb{Z}).$$

By a slight abuse of notation, $c_1(L)$ is also considered as an element of $H^2(X, \mathbb{R})$ (replacing $H^2(X, \mathbb{Z})$ by $H^2(X, \mathbb{Z}) \otimes \mathbb{R}$).
Compact Kähler manifolds

Let X be a compact Kähler manifold of dimension k.

Examples: Complex projective space \mathbb{P}^k, Complex torus \mathbb{C}^k/Λ, $K3$ surface etc..

$Pic(X)$ denotes the Picard group of X that is isomorphism classes of line bundles on X.

We denote the Chern map by

$$c_1 : Pic(X) \to H^2(X, \mathbb{Z}).$$

By a slight abuse of notation, $c_1(L)$ is also considered as an element of $H^2(X, \mathbb{R})$ (replacing $H^2(X, \mathbb{Z})$ by $H^2(X, \mathbb{Z}) \otimes \mathbb{R}$).

The Néron-Severi group of X is the image of the Chern map:

$$NS(X) = c_1(Pic(X)) \subset H^2(X, \mathbb{R}).$$

The Picard number is the rank of this free abelian group.
Diffeomorphisms of X which are holomorphic are called \textit{automorphisms}. We denote the set of all automorphisms by $Aut(X)$.
Diffeomorphisms of X which are holomorphic are called *automorphisms*. We denote the set of all automorphisms by $\text{Aut}(X)$.

It is a classical theorem that the group $\text{Aut}(X)$ is a complex Lie group, the Lie algebra of which is the algebra of holomorphic vector fields on X.
Dynamical degrees

An automorphism $f \in Aut(X)$ induces a linear action

$$f^*_{p,q} : H^{p,q}(X, \mathbb{R}) \to H^{p,q}(X, \mathbb{R})$$

$$f^*_{p,q}\{\theta\} := \{f^*_{p,q}\theta\}$$

where $\{\theta\}$ denotes the class of the smooth (p, q)-form θ in $H^{p,q}(X, \mathbb{R})$.
An automorphism $f \in Aut(X)$ induces a linear action

$$f^*_{p,q} : H^{p,q}(X, \mathbb{R}) \to H^{p,q}(X, \mathbb{R})$$

$$f^*_{p,q}\{\theta\} := \{f^*_{p,q}\theta\}$$

where $\{\theta\}$ denotes the class of the smooth (p, q)-form θ in $H^{p,q}(X, \mathbb{R})$.

For $f \in Aut(X)$ the i^{th} dynamical degree

$$\lambda_i(f) = \text{spectral radius of } f^*_{i,i}.$$

that is $\lambda_i(f)$ is the largest (modulus of) eigenvalues of f^* on $H^{i,i}(X, \mathbb{C})$.
Let $f \in Aut(X)$ we consider the discrete dynamical system induced by f i.e. we consider the iterates

$$f \circ f \circ \ldots \circ f$$
Topological entropy

Let $f \in Aut(X)$ we consider the discrete dynamical system induced by f i.e. we consider the iterates

$$f \circ f \circ \ldots \circ f$$

Roughly speaking, entropy of an automorphism f quantifies the degree to which the dynamics of f is chaotic.
Let $f \in \text{Aut}(X)$ we consider the discrete dynamical system induced by f i.e. we consider the iterates

$$f \circ f \circ \ldots \circ f$$

Roughly speaking, entropy of an automorphism f quantifies the degree to which the dynamics of f is chaotic.

Theorem (Gromov and Yomdin)

Let f be an automorphism of a compact Kähler manifold X. Then, the topological entropy of f is given by

$$h_{\text{top}}(f) = \max_{0 \leq i \leq k} \log \lambda_i(f).$$

Therefore, f has positive topological entropy if, and only if, f^* has an eigenvalue larger than 1.
Some constraints on Aut(X)

The automorphism group $\text{Aut}(X)$ acts linearly on the cohomology of X and this provides a homomorphism:

$$\text{Aut}(X) \to \text{GL}(H^*(X, \mathbb{Z}))$$

We denote the image of $\text{Aut}(X)$ under this homomorphism by $\text{Aut}(X)^*$. Theorem (Lieberman) The connected component of the identity $\text{Aut}_0(X)$ is contained in the kernel of this homomorphism. Thus, $\text{Aut}(X)$ has a finite number of connected components if and only if the group $\text{Aut}(X)^*$ is finite.
Some constraints on $\text{Aut}(X)$

The automorphism group $\text{Aut}(X)$ acts linearly on the cohomology of X and this provides a homomorphism:

$$\text{Aut}(X) \rightarrow \text{GL}(H^*(X, \mathbb{Z}))$$

$$f \rightarrow f^*$$

We denote the image of $\text{Aut}(X)$ under this homomorphism by $\text{Aut}(X)^*$.
Some constraints on Aut(\(X\))

The automorphism group \(Aut(X)\) acts linearly on the cohomology of \(X\) and this provides a homomorphism:

\[
Aut(X) \rightarrow GL(H^*(X, \mathbb{Z}))
\]

\[
f \rightarrow f^*
\]

We denote the image of \(Aut(X)\) under this homomorphism by \(Aut(X)^*\).

Theorem (Lieberman)

The connected component of the identity

\[
Aut_0(X) \subset Aut(X)
\]

has finite index in the kernel of this homomorphism.
Some constraints on Aut(X)

The automorphism group Aut(X) acts linearly on the cohomology of X and this provides a homomorphism:

\[
\text{Aut}(X) \to GL(H^\ast(X, \mathbb{Z}))
\]

\[
f \to f^\ast
\]

We denote the image of Aut(X) under this homomorphism by Aut(X)*.

Theorem (Lieberman)

The connected component of the identity

\[\text{Aut}_0(X) \subset \text{Aut}(X)\]

has finite index in the kernel of this homomorphism.

Thus, Aut(X) has a finite number of connected components if and only if the group Aut(X)* is finite.
Compact complex surfaces

Introduction

Compact Kähler surfaces

Higher Dimensions

Automorphism Group of Blow-ups of \mathbb{CP}^k

Theorem (Cantat, Nagata)

If a compact complex surface S admits an automorphism with positive entropy, then S is Kähler and is obtained from the projective plane \mathbb{P}^2, a torus, a $K3$ surface or an Enriques surface, by a finite sequence of point blow-ups.

Examples of automorphisms with positive entropy are easily constructed on tori, $K3$ surfaces, or Enriques surfaces (see [Cantat] panorama survey).

On the other hand, examples of automorphisms with positive entropy on rational surfaces are harder to find. [Bedford and Kim, McMullen etc]. These examples are obtained from birational transformations f of the plane by a finite sequence of blow-ups that resolves all indeterminacies of f and f^{-1} simultaneously.
Compact complex surfaces

Theorem (Cantat, Nagata)

If a compact complex surface S admits an automorphism with positive entropy, then S is Kähler and is obtained from the projective plane \mathbb{P}^2, a torus, a K3 surface or an Enriques surface, by a finite sequence of point blow-ups.
Theorem (Cantat, Nagata)

If a compact complex surface S admits an automorphism with positive entropy, then S is Kähler and is obtained from the projective plane \mathbb{P}^2, a torus, a $K3$ surface or an Enriques surface, by a finite sequence of point blow-ups.

Examples of automorphisms with positive entropy are easily constructed on tori, $K3$ surfaces, or Enriques surfaces (see [Cantat] panorama survey).
Compact complex surfaces

Theorem (Cantat, Nagata)

If a compact complex surface S admits an automorphism with positive entropy, then S is Kähler and is obtained from the projective plane \mathbb{P}^2, a torus, a K3 surface or an Enriques surface, by a finite sequence of point blow-ups.

Examples of automorphisms with positive entropy are easily constructed on tori, K3 surfaces, or Enriques surfaces (see [Cantat] panorama survey).

On the other hand, examples of automorphisms with positive entropy on rational surfaces are harder to find. [Bedford and Kim, McMullen etc].
Compact complex surfaces

Theorem (Cantat, Nagata)

If a compact complex surface S admits an automorphism with positive entropy, then S is Kähler and is obtained from the projective plane \mathbb{P}^2, a torus, a $K3$ surface or an Enriques surface, by a finite sequence of point blow-ups.

Examples of automorphisms with positive entropy are easily constructed on tori, $K3$ surfaces, or Enriques surfaces (see [Cantat] panorama survey).

On the other hand, examples of automorphisms with positive entropy on rational surfaces are harder to find. [Bedford and Kim, McMullen etc]. These examples are obtained from birational transformations f of the plane by a finite sequence of blow-ups that resolves all indeterminacies of f and f^{-1} simultaneously.
Automorphism group of blow-ups

Problem

Does there exist an example of a birational transformation f of the projective space \mathbb{P}^k, $k \geq 3$, which becomes an automorphism with positive entropy after a finite sequence of blow-ups?
Problem

Does there exist an example of a birational transformation f of the projective space \mathbb{P}^k, $k \geq 3$, which becomes an automorphism with positive entropy after a finite sequence of blow-ups?

We answer this question negatively in several cases and provide new criteria to prove that $\text{Aut}(X)^*$ is finite.
Main result

Theorem

Let X_0 be a smooth, connected, complex projective variety of dimension k with Picard number 1 (resp. a compact Kähler manifold with $h^{1,1}(X_0) = 1$).

Let m be a positive integer, and $\pi_i : X_{i+1} \to X_i$, $i = 0, \ldots, m - 1$, be a sequence of blow-ups of smooth irreducible subvarieties of dimension at most r.

If $k > 2r + 2$ then the group $\text{Aut}(X_m)^*$ is finite.
Main result

Theorem

Let X_0 be a smooth, connected, complex projective variety of dimension k with Picard number 1 (resp. a compact Kähler manifold with $h^{1,1}(X_0) = 1$).

Let m be a positive integer, and $\pi_i : X_{i+1} \to X_i$, $i = 0, \ldots, m - 1$, be a sequence of blow-ups of smooth irreducible subvarieties of dimension at most r.

If $k > 2r + 2$ then the group $\text{Aut}(X_m)^*$ is finite.

In particular,

- every automorphism of X_m has zero topological entropy.
- $\text{Aut}(X)$ has finitely many connected components.
If X_m is obtained from $X_0 = \mathbb{P}^k$, with $k \geq 3$, by blowing up a finite sequence of points then the topological entropy of all automorphisms of X_m is equal to zero.
Examples

- If X_m is obtained from $X_0 = \mathbb{P}^k$, with $k \geq 3$, by blowing up a finite sequence of points then the topological entropy of all automorphisms of X_m is equal to zero.

- If X_0 is a smooth cubic hypersurface of \mathbb{P}^{k+1} and $k \geq 3$ then the same statement applies.
Examples

- If X_m is obtained from $X_0 = \mathbb{P}^k$, with $k \geq 3$, by blowing up a finite sequence of points then the topological entropy of all automorphisms of X_m is equal to zero.

- If X_0 is a smooth cubic hypersurface of \mathbb{P}^{k+1} and $k \geq 3$ then the same statement applies.

Thus, among all birational transformations of X_0, none of them lifts to an automorphism with positive entropy after a finite sequence of blow-ups of points (or of centers of dimension $< (k - 2)/2$).
Thanks!!