§3.2: 6, 8, 12, 22, 26, 32, 42, 46

§3.3: 6, 8, 10, 20

Also do the following.

Problem 1. Evaluate \(\lim_{x \to 2} f(x) \), \(\lim_{x \to 2^-} f(x) \), and \(\lim_{x \to 2^+} f(x) \) for the following function \(f \):

\[
f(x) := \begin{cases}
\cos(\pi x), & x \leq 2 \\
\sqrt{x}, & x > 2.
\end{cases}
\]

Problem 2. Let \(f : [-1,1] \to \mathbb{R} \) be the function defined by

\[
f(x) := \begin{cases}
1, & \text{if } x \in \left(\frac{1}{n+1}, \frac{1}{n} \right) \text{ for some odd positive integer } n = 1, 3, 5 \ldots; \\
-1, & \text{if } x \in \left(\frac{1}{n+1}, \frac{1}{n} \right) \text{ for some even positive integer } n = 2, 4, 6 \ldots; \\
-1, & \text{if } x \in \left(\frac{1}{n}, \frac{1}{n-1} \right) \text{ for some odd negative integer } n = -1, -3, -5 \ldots; \\
1, & \text{if } x \in \left(\frac{1}{n}, \frac{1}{n-1} \right) \text{ for some even negative integer } n = -2, -4, -6 \ldots; \\
0, & \text{if } x = 0.
\end{cases}
\]

Sketch the graph of \(f \) (make sure to give yourself plenty of space, and note that you won’t be able to sketch all of the graph near the origin). Then compute \(\lim_{x \to 0} f(x) \) or determine that it does not exist, and justify your answer using sequences as in Definition 2 in §3.1.1. (Of course, think about the \(\sin(\frac{x}{x}) \) example we did in class.)

Problem 3. Is the function \(f(x) = |x| \) continuous at \(x = 0 \)? Justify your answer.

Problem 4. Let \(f \) and \(g \) be functions which are continuous at \(x = c \). Prove that if \(g(c) \neq 0 \), then the quotient function \(\frac{f}{g} \) is continuous at \(x = c \).