Back to recursions:

\[a_{n+1} = \frac{4}{n+1} \cdot \frac{2^{n+1}}{7^n}, \quad a_0 = 2 \]

\[\left(2, \frac{8}{7}, \frac{32}{49}, \frac{128}{343}, \ldots \right) \]

Guess: \(a_n = \frac{4^n}{n} \), Both: this is correct.

\[\lim_{n \to \infty} \frac{4^n}{n} = 1 \] (check!)

What if we failed to guess formula for \(a_n \)?

A hint strategy: A fixed point of \(f \) is \(a \in \mathbb{R} \) s.t.

\[f(a) = a \]

Fact: If \(a_{n+1} = f(a_n) \) recursively defined & \((a_n) \) converges to \(a \), then \(a \) must be a fixed pt of \(f \) (provided \(f \) is cts at \(a \)) (to be def later)

Above eq: \(f(x) = \frac{2x}{7} + \frac{3}{7} \)

Solve for fixed pt: \(a = \frac{2}{7} a + \frac{3}{7} \implies \frac{3}{7} a = \frac{3}{7} \implies a = 1 \)

Checks!

Next

\[a_{n+1} = \sqrt{5a_n}, \quad a_0 = 2 \]

Assuming \(\lim_{n \to \infty} a_n \) exists, find it.

Soln: Solve for fixed pt: \(a = \sqrt{5a} \implies a^2 = 5a \)

\(\implies a = 0 \) or \(5 \)

In Few So many points: \(a = 2, 3, 1.62, 3.976, 9.459, \ldots \) \(\implies \lim \) is 5

Rem: \(\lim \) of a seq is unique if exists.

So if \(f \) has >1 fixed pts, at most 1 can be \(\lim \).

Def: Let \(a_1, a_2, \ldots, a_n \in \mathbb{R} \). Then

\[\sum_{k=1}^{n} a_k = a_1 + a_2 + \ldots + a_n \] Sigma notation

\[\sum_{k=1}^{2} k = \frac{(2)(2+1)}{2} = 3 \]

\[\sum_{k=2}^{2} \sin(k) = 0 \]

\[\sum_{k=-2}^{0} \sin(k) = \sin(-2) + \sin(-1) + \sin(0) + \sin(1) + \sin(2) \]

\[= 0 \]

Sec 3.1 Limits

except if possibly not out of c.

"Def" Let \(f \) be def on some open interval containing \(c \).

Say the limit of \(f(x) \) as \(x \) approaches \(c \) is \(L \) if \(f(x) \) becomes arbitrarily close (but not necessarily =) to \(L \) whenever \(x \) is suff close, but not =, to \(c \)

Write: \(\lim_{x \to c} f(x) = L \) or \(f(x) \to L \) as \(x \to c \)

Say \(f \) converges to \(L \) at \(c \). (L unique if exists)

If \(f \) does not converge at \(c \), say \(f \) diverges at \(c \).

Version in terms of seqs:

\[\lim_{x \to c} f(x) = L \iff \text{for any seq } \{x_n\} \text{ s.t. } x_n \to c \text{ and } x_n \neq c \text{ for } n \to \infty \]

\[\lim_{x_n \to c} f(x_n) = L \]

\[\lim_{x \to c} f(x) = L \text{ from the right} \]

\[\lim_{x \to c^-} f(x) = L \text{ from the left} \]

\[f(x) = \begin{cases}
 x^2, & x \neq 2 \\
 1, & x = 2
\end{cases} \]

\[\lim_{x \to 2^+} f(x) = 4 \] - val of \(f \) at \(2 \) irrelevant

\[\lim_{x \to 2^-} f(x) = \frac{3}{2} \]

\[\lim_{x \to 0^+} f(x) = 1, \lim_{x \to 0^-} f(x) = 1, \lim_{x \to 0} f(x) \text{ DNE} \]

"Def" \(\lim_{x \to 0} f(x) = \infty \) means \(f \) becomes arb large as \(x \to c \)

\[\lim_{x \to 0} \frac{1}{x} = \infty \]

\[\lim_{x \to 0} f(x) = 0 \]

\[\lim_{x \to 0} f(x) \text{ DNE} \]

\[f(x) = \sin \left(\frac{\pi}{x} \right) \]

Looks like \(\lim_{x \to 0} f(x) \) DNE.