Formulas

- The differential equation \(\frac{dy}{dx} = k(y - a) \) for \(k, a \in \mathbb{R} \) has general solution \(y(x) = Ce^{kx} + a \).
- The differential equation \(\frac{dy}{dx} = k(y - a)(y - b) \) for \(k, a, b \in \mathbb{R} \) has general solution

\[
 y(x) = \begin{cases}
 a - \frac{1}{kx + C}, & a = b, \ y \neq a; \\
 a - bCe^{k(a-b)x} \frac{1}{1 - Ce^{k(a-b)x}}, & a \neq b, \ y \neq b.
 \end{cases}
\]

Problem 1. [3 + 7 points] Consider the differential equation \(\frac{dy}{dt} = 2y^2 - 8 \).

(a) Find the general solution \(y(t) \). (It is OK for your expression to exclude the equilibrium values of \(y \).)
(b) Find the equilibrium values of \(y \) and evaluate their stability.

Solution. (a) Since the given equation is \(\frac{dy}{dt} = 2y^2 - 8 = 2(y - 2)(y + 2) \), we simply take \(k = 2, a = 2, b = -2 \) in the formula for the general solution:

\[
y(t) = \frac{2 + 2Ce^{2(2+2)t}}{1 - Ce^{2(2+2)t}} = \frac{2 + 2Ce^{8t}}{1 - Ce^{8t}}
\]

(b) Let \(g(y) := 2y^2 - 8 \).

The equilibria are the values \(\hat{y} \) for which \(g(\hat{y}) = 0 \), which are the values \(a \) and \(b \) above, i.e. \(\pm 2 \). To evaluate the stability of these equilibria, we use the derivative

\[
\frac{dg}{dy}(y) = 4y.
\]

Then

\[
\frac{dg}{dy}(2) = 8 > 0 \implies \hat{y} = 2 \text{ is unstable}
\]

and

\[
\frac{dg}{dy}(-2) = -8 < 0 \implies \hat{y} = -2 \text{ is locally stable}.
\]

Problem 2. [10 points] Let \(a, b \in \mathbb{R} \) be constants, and consider the linear system

\[
4x + ay = -6 \\
x - 2y = b.
\]

For which values of \(a \) and \(b \) does the system have (i) infinitely many solutions and (ii) no solutions? For the values of \(a \) and \(b \) in (i), determine the solution set of the system.

Solution 1. There are three possibilities for the lines in \(\mathbb{R}^2 \) corresponding to the solution sets of each of the two equations: they intersect once (one solution), they are the same line (infinitely many solutions), or they are parallel but distinct (no solution). Note that if \(a = 0 \), then the first equation yields \(x = -3/2 \), and substituting this into the second equation yields \(y = 3/4 - b/2 \) — a unique solution. So to find the values of
a and b corresponding to (i) or (ii), it is safe to assume that $a \neq 0$. Rewritten in slope-intercept form, the two equations then become

$$
y = -\frac{4}{a} x - \frac{6}{a},$$

$$
y = \frac{1}{2} x - \frac{b}{2}.
$$

(i) For there to be infinitely many solutions, then, we must have an equality of slopes

$$\frac{-4}{a} = \frac{1}{2} \implies a = -8.$$

and an equality of constant terms

$$\frac{-b}{2} = -\frac{6}{a} = -\frac{6}{-8} = \frac{3}{4} \implies b = -\frac{3}{2}.$$

(ii) For there to be no solutions, the slopes must be equal to have parallel lines, so we still have $a = -8$. But the lines must have different y-intercepts, and thus $b \neq -3/2$.

Finally, the solution set in (i) corresponds to the line that both equations lie on, that is,

$$\begin{array}{l}
\{(x, y) \in \mathbb{R}^2 \mid y = \frac{1}{2} x + \frac{3}{4} \} = \left\{ \left(x, \frac{1}{2} x + \frac{3}{4} \right) \in \mathbb{R}^2 \mid x \in \mathbb{R} \right\} \quad \square
\end{array}$$

Solution 2. Let

$$
A := \begin{bmatrix} 4 & a \\ 1 & -2 \end{bmatrix}, \quad X := \begin{bmatrix} x \\ y \end{bmatrix}, \quad \text{and} \quad B := \begin{bmatrix} -6 \\ b \end{bmatrix}.
$$

Then the linear system can be expressed as the matrix equation

$$AX = B.$$

When the matrix A is invertible, there is a unique solution $X = A^{-1}B$. Hence for there to be infinitely many or no solutions, A must be non-invertible, which holds if and only if

$$0 = \det A = -8 - a \iff a = -8.$$

So let us take $a = -8$ for the rest of the problem. Then we row reduce the augmented matrix of the linear system,

$$
\begin{bmatrix} 4 & -8 & -6 \\ 1 & -2 & b \end{bmatrix} \xrightarrow{R_1 \rightarrow R_1 - 4R_2} \begin{bmatrix} 0 & 0 & -6 - 4b \\ 1 & -2 & b \end{bmatrix}.
$$

This system is consistent if and only if $-6 - 4b = 0$, i.e., if and only if $b = -3/2$. For this value of b, we set $y = t$ for a parameter t, and we obtain from the second row in the last matrix that $x = -3/2 + 2y = -3/2 + 2t$. Thus (i) we find an infinite solution set exactly when $a = -8$ and $b = -3/2$,

$$\left\{ \begin{bmatrix} -3/2 + 2t \\ t \end{bmatrix} \mid t \in \mathbb{R} \right\};$$

and (ii) we find that there are no solutions exactly when $a = -8$ and $b \neq -3/2$. \square

Remark. Note that the presentations of the solution sets in (i) are different in Solutions 1 and 2, i.e., the sets are written down in different ways. But the sets themselves really are the same!

Problem 3. [10 points] Find the eigenvalues and all corresponding eigenvectors of the matrix $A = \begin{bmatrix} 2 & 4 \\ 3 & -2 \end{bmatrix}$.
Solution. The eigenvalues λ are the solutions to $\det(A - \lambda I) = 0$:

$$0 = \det(A - \lambda I) = \det \begin{bmatrix} 2 - \lambda & 4 \\ 3 & -2 - \lambda \end{bmatrix} = (2 - \lambda)(-2 - \lambda) - 4 \cdot 3 = \lambda^2 - 16 = (\lambda - 4)(\lambda + 4)$$

$$\implies \lambda = 4 \text{ or } \lambda = -4.$$

The eigenvectors for $\lambda = 4$ are the nonzero solutions $[x_1 \ x_2]$ to $(A - 4I)[x_1 \ x_2] = 0$. We express this linear system in terms of its augmented matrix,

$$\begin{bmatrix} -2 & 4 & 0 \\ 3 & -6 & 0 \end{bmatrix} \xrightarrow{R_2 \rightarrow \frac{-1}{2} \cdot R_1} \begin{bmatrix} -2 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Setting $x_2 = t$ for a parameter t, we find that $x_1 = 2x_2 = 2t$. Thus the set of eigenvectors for $\lambda = 4$ is

$$\left\{ \begin{bmatrix} 2t \\ t \end{bmatrix} \mid t \in \mathbb{R}, t \neq 0 \right\}.$$

Analogously, the eigenvectors for $\lambda = -4$ are the nonzero solutions $[x_1 \ x_2]$ to $(A + 4I)[x_1 \ x_2] = 0$. We express this linear system in terms of its augmented matrix,

$$\begin{bmatrix} 6 & 4 & 0 \\ 3 & 2 & 0 \end{bmatrix} \xrightarrow{\frac{1}{2} \cdot \cdot \cdot \cdot R_2 \rightarrow R_1} \begin{bmatrix} 6 & 4 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Setting $x_2 = t$ for a parameter t, we find that $x_1 = -\frac{2}{3}x_2 = -\frac{2}{3}t$. Thus the set of eigenvectors for $\lambda = -4$ is

$$\left\{ \begin{bmatrix} -\frac{2}{3}t \\ t \end{bmatrix} \mid t \in \mathbb{R}, t \neq 0 \right\}.$$

Problem 4. [10 points] Find all real numbers $a > 0$ for which the integral

$$\int_1^\infty \frac{1}{x^a} \, dx$$

converges. (HINT: Consider the cases $a = 1$ and $a \neq 1$ separately.)

Solution. First, for $a = 1$,

$$\int_1^\infty \frac{1}{x} \, dx = \lim_{z \to \infty} \int_1^z \frac{1}{x} \, dx = \lim_{z \to \infty} \ln |x| \bigg|_1^z = \lim_{z \to \infty} \ln |z| - 0 = \infty.$$

Hence the integral diverges when $a = 1$.

For $a \neq 1$,

$$\int_1^\infty \frac{1}{x^a} \, dx = \lim_{z \to \infty} \int_1^z \frac{1}{x^a} \, dx = \lim_{z \to \infty} x^{1-a} \bigg|_1^z = \frac{1}{1-a} \left(\lim_{z \to \infty} z^{1-a} \right) - \frac{1}{1-a}.$$

Now for $p > 0$, $\lim_{z \to \infty} z^p = \infty$, and for $p < 0$, $\lim_{z \to \infty} z^p = 0$. This corresponds to $1 - a > 0$ and $1 - a < 0$, respectively. So the above integral diverges when $a < 1$ and converges when $a > 1$. \qed

Problem 5. [3 + 7 points]

(a) If a function $f(x, y)$ is defined on some open disk around (x_0, y_0), what does it mean for f to be continuous at (x_0, y_0)?

(b) Is the function

$$f(x, y) = \begin{cases} \frac{xy}{x^2 - y^2}, & (x, y) \neq (0, 0); \\ 0, & (x, y) = (0, 0) \end{cases}$$

continuous at $(0, 0)$? Justify your answer. (HINT: What is our usual way to probe a question like this?)
Solution. (a) The function f is continuous at (x_0, y_0) if $\lim_{(x,y) \to (x_0, y_0)} f(x, y) = f(x_0, y_0)$.

(b) If we restrict f to the line $y = mx$ for fixed $m \in \mathbb{R}$, we obtain

$$\lim_{(x,y) \to (0,0)} f(x,y) = \lim_{x \to 0} \frac{mx^2}{x^2 - m^4x^4} = \lim_{x \to 0} \frac{m}{1 + m^4x^2} = m.$$

Thus different values of m (e.g., $m = 0$ and $m = 1$) give different values for this limit. We conclude that f approaches different limits along different paths through $(0,0)$, and therefore $\lim_{(x,y) \to (0,0)} f(x, y)$ does not exist. Therefore f is not continuous at $(0,0)$. \hfill \Box$