Abstract. Let S be a set, and let μ be a map from $S \times S$ to the power set of S. For any two elements p and q of S, we write pq instead of $\mu(p, q)$ and assume that pq is not empty. For any two non-empty subsets P and Q of S, we define the complex product PQ to be the union of the sets pq with $p \in P$ and $q \in Q$. If one of the two factors in a complex product consists of a single element, say s, we write s instead of $\{s\}$ in that product.

Following (and generalizing) Frédéric Marty’s terminology (1934) we call S a hypergroup (with respect to μ) if the following three conditions hold.

1. $\forall p, q, r \in S: p(qr) = (pq)r$.
2. $\exists e \in S \forall s \in S: se = \{s\}$.
3. $\forall s \in S \exists s^* \in S \forall p, q, r \in S: p \in q^*r^* \Rightarrow q \in r^*p^*$ and $r \in p^*q^*$.

Each association scheme (I will give the definition of an association scheme in my talk) satisfies the above three conditions with respect to its complex multiplication. Thus, hypergroups generalize association schemes.

I will explain how association schemes may take advantage of the structure theory of hypergroups. Special attention will be given to the embedding of the theory of buildings (also the definition of a building will be given in my talk) into scheme theory.

I will start with a simple example: the general linear group $GL_3(2)$ of order 168.