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CHAPTER 1

First Lecture

We begin by recalling some basic definitions and facts. In the class treat both
real R and complex C linear algebra. The former is probably more familiar and
”physical” though the latter is more general (and becomes necessary for the correct
statement of some theorems). Recall C is the complex numbers, we will review these
next lecture. Most aspects of linear algebra that we discuss won’t really depend
on whether we work over R or C. However, as Trefethen and Bau usually works
over C we will do so as well. Unless otherwise stated everything we will do holds
over R and we will often illustrate concepts over R as the geometry. There will be
some cases were the distinction matters and we will point these out! Recall that
the complex numbers are just the real numbers with an additional “imaginary”
number I which we treat like a regular number except I2 = −1. (Note we don’t
use i as we want to reserve that for other purposes).

1. Vectors

For us a vector will be a n-tuple of real or complex numbers. i.e. v is can be
represented by (v1, . . . , vn) for vi ∈ C). We will then say v ∈ Cn. If all the vi are
real then we have v ∈ Rn is the set of n-dimensional vectors over the reals. We
will also say v is a real vector. Rather than write vectors as n-tubles we will always
write them as columns.

v =

v1

...
vn


While the difference between tuples and columns is notational there is a more
fundamental difference between the two. An n-tuple should really be though of as
just an (ordered) list of numbers while the vector has some additional geometric
and algebraic meaning. It is a subtle point, but conceptually important to make
this distinction.

As we know we can add vectors. Let v,w ∈ Cn with

v =

v1

...
vn

 ,w =

w1

...
wn


then

v + w =

v1 + w1

...
vn + wn


3
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Geometrically, if we have (say) R vectors this corresponds to laying the vectors end
to end. Notice v + w = w + v and we see this geometrically as well.

We may also multiply vectors by a scalar number λ ∈ C

λv :=

λv1

...
λvn


Geometrically, for R vectors this corresponds to stetching the vector by a factor
of |λ| and reversing direction if λ < 0. We can also multiply on the left side by a
scalar and

vλ := λv.

Finally, scalar multiplication interactions with sums in the usual way, namely:

λ(v + w) = λv + λw.

Let us recall some important vectors:

0 :=

0
...
0


the additive identity. This geometrically this corresponds to “doing nothing” and
0 + v = v + 0 = v and λ0 = 0. The “standard basis vectors”

ei =



0
...
1
...
0

 ith slot

If n = 3 and we consider real vectors then e1 = i, e2 = j, e3 = k. Note we can
always write a vector v ∈ Cn (uniquely) as

v =
n∑

i=1

viei =



v1

...
vi

...
vn


For vi ∈ C (or ∈ R if v is a real vector). That is the ei are a basis of Cn (we will
come back to this latter)..

2. Linear Transformations

Vectors are the basic object in linear algebra but are not all that interesting
in and of themselves. More interesting is to study transformations of vectors.
In the context of linear algebra we restrict attention to Linear Transformations.
That is transformations that respect the linear structure (i.e. addition and scalar
multiplication). More precisely a linear transformation is a function

T : Cn → Cm
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so that T (v + w) = T (v) + T (w) and T (λv) = λT (v). This class will mostly
consist of studying linear transformations. However, just as we think of a vector as
a concrete list, we will also think of a linear transformation as a concrete object–
namely as an array of numers called a matrix.

Recall a complex valued matrix is just an m × n array of complex numbers
(when all the entries are real we say it is real matrix ):

A :=

a11 · · · a1n

...
. . .

...
am1 · · · amn

 =
[
a1 | · · · | an

]
where here aj are columns:

aj =

a1j

...
amj

 .

This suggests we think of the columns as vectors, which we will very often do. We
will write A ∈ Cm×n to say that A is an m × n matrix with complex entries and
A ∈ Rm×n if the entries are real.

How do we go between T and the matrix A that represents it? The easiest way
is to see what T does to the standard basis. As T (ej) is a vector in Cm we can
expand it in standard basis vectors ei of Cm as:

T (ej) = ai =
m∑

i=1

aijei

but that is just

T (ej) =

a11 · · · a1n

...
. . .

...
am1 · · · amn




0
...
1
...
0


Where this is standard matrix multiplication (see below). Notice that the ith
column of A just the image of ei. By linearity then for arbitrary v =

∑n
j=1 vjej

one has

T (v) =
m∑

i=1

n∑
j=1

aijvjei

That is

T (v) =

a11 · · · a1n

...
. . .

...
am1 · · · amn




v1

...
vi

...
vm


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More compactly one can write:

T (v) =
[
a1 | · · · | an

]


v1

...
vi

...
vm


= v1a1 + . . . + vnan

here the aj = T (ej) are the columns of the matrix.
As with vectors we will usually just talk directly about a m × n matrix but

just as with should always remember that this is representing some sort of linear
transformation.

3. Algebra of matrices

Recall that we can add matrices, multiply them by a scalar and multiply a
m×n matrix on the left by a n×k matrix. Addition and multiplication by a scalar
are unambiguous. But in case you’re a little rusty: Set

A =

a11 · · · a1n

...
. . .

...
am1 · · · amn

 , B =

 b11 · · · b1n

...
. . .

...
bm1 · · · bmn

 .

Then

A + B =

a11 · · · a1n

...
. . .

...
am1 · · · amn

 +

 b11 · · · b1n

...
. . .

...
bm1 · · · bmn

 =

 c11 · · · c1n

...
. . .

...
cm1 · · · cmn


where cij = aij + bij . If λ ∈ C then

λA = Aλ =

λa11 · · · λa1n

...
. . .

...
λam1 · · · λamn


Slightly more complicated is matrix multiplication: Let B now be

B =

b11 · · · b1k

...
. . .

...
bn1 · · · bnk


a11 · · · a1n

...
. . .

...
am1 · · · amn


b11 · · · b1k

...
. . .

...
bn1 · · · bnk

 =

 a11b11 + . . . + a1nbn1 · · · a11b1k + . . . + a1nbnk

...
. . .

...
am1b11 + . . . + amnbn1 · · · am1b1k + . . . + amnbnk


or more compactly

AB =
[
Ab1 | · · · |Abk

]
here bj are the columns of B. Notice that this (perhaps mysterious) formula for
matrix multiplication comes from looking at the linear map that arises from the
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composition of two linear maps. Notice also that if we let C = AB and then expan-
ing things out we see that the columns of C can be expressed as linear combinations
of the columns of B.

Most of the usual algebraic rules apply except that matrix multiplication is not
commutative. Just to list them, let A,B ∈ Cm×n, C,D ∈ Cn×k, E ∈ Ck×l, λ ∈ C.
Then

A + B = B + A

λA = Aλ

λ(A + B) = λA + λB

A(λC + D) = λAC + BD

(A + B)C = AC + BC

(AC)D = A(CD)

Finally, we recall some important matrices. The first is the zero matrix. This
is the matrix in each Cm×n which has all zero entries and which we denote by
0. This corresponds to the linear transformation that sends everything to 0. If
A ∈ Cm×n, B ∈ Cl×m and C ∈ Cn×k and λ ∈ C then

A + 0 = 0 + A = A

λ0 = 0λ = 0
B0 = 0 = 0C.

We also introduce the the identity matrix I ∈ Cm×m (which we will also denote
by Id). This is the matrix

I =
[
e1| · · · |ei| · · · |en

]
whose columns are the standard basis. This matrix corresponds to the transforma-
tion that preserves all vectors. For B ∈ Cl×m and C ∈ Cm×k we have

BI = B

IC = C





CHAPTER 2

Second Lecture

In this lecture we review some of the properties of complex numbers.

1. Complex Numbers

Let us look at the following equation:

(1.1) x2 + 1 = 0

Naively x =
√
−1 would seem to be a solution. However, for any real xR x2 +1 ≥ 1

so this equation can never be solved over the reals. One of the great realizations
in mathematics was that in fact there is a solution if we just expand our concept
of numbers. Indeed, we can introduce an “imaginary” number I. This is not a
real number and is just a symbol. However, by pretending it has all the algebraic
properties of a usual number along with satisfying I2 = −1, will lead to a consistent
theory. Formally doing so will allow us to say (up to a sign) I =

√
−1.

In practice what this means is that we should be able to mulitply I by any
real number a to get a new “imaginary” number Ia. The set of all such numbers is
usually refered to as the set of (purely) “imaginary” numbers and is denoted IR (it
is more standard to use i but I want to avoid confusion with indices). We can also
add real and complex numbers to get new numbers that (usually) are neither real
nor complex that is let a, b ∈ R and then z = a + Ib is (for a, b 6= 0) neither real
nor imaginary. We denote the set of all such numbers by C and call them complex
numbers.

Since we seek an algebraically consistent set of numbers, we must be a little
careful how we define various algebraic operations. To add complex numbers we
have:

(a + Ib) + (c + Id) = (a + c) + I(b + d)

and to multiply we have

(a + Ib)(c + Id) = (a + Ib)c + (a + Ib)Ib = ac− bd + I(ad + bc).

One important operation that is new is complex conjugation. The idea here is to
take a complex number z = a + ib and associate its complex conjugate z̄ = a− ib.
The reason we do this is then that zz̄ = a2 + b2 is then always real (and non-
negative). Notice that if z = a + Ib then

a = <z =
z + z̄

2
and

b = =z =
z − z̄

2I
.

9
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The fact that zz̄ is a non-negative real number makes it tempting to think of
it as a length. This we do and define the modulus of the complex number z to be

|z| =
√

zz̄.

Notice if z = a + Ib for a, b ∈ R then |z| =
√

a2 + b2. It is straightforward to see
that z = 0 if and only if |z| = 0.

The complex conjugate also gives an unambiguous way to to divide a complex
number by a non-zero complex number. Indeed,

z1

z2
=

z1z̄2

|z2|2
.

The right hand side consists of multiplication of two complex numbers and then
division by a real number all of which is straightforward.

We introduced the complex numbers in order to find roots to x2+1 = 0. Indeed,
we can now check that I and −I are the (only) two solutions of this equation. It
turns out that once one has I all polynomials (even with complex coefficients) have
a solution.

Theorem 1.1. (Fundamental Theorem of Algebra) Let

p(x) =
n∑

i=0

aix
i

be a polynomial of order n (can consider ai ∈ C) with an 6= 0. Then p(x) = 0 has
exactly n solutions (counting multiplicity) z1, . . . , zn in C. That is

p(x) = an(x− z1)(x− z2) · · · (x− zn)

2. Geometry of Complex Numbers

Real numbers are usual represented as points on a line. What is the right way
to think of representing complex numbers geometrically? Notice that z = a + Ib is
really just a pair of numbers (a, b). It can also be thought of as a vector:[

a
b

]
.

That is the complex number z can be represented as a 2-dimensional real vector.
Notice complex addition is then the same as vector addition, However, complex
numbers can be multiplied and there is no clear way to interpret this for vectors.

This graphical representation gives another way to describe a complex number
z = a + Ib. Namely, we can associate an angle θ and a radius r ≥ 0 to z so that
z = r cos θ + i sin θ. Explictily, r = |z| =

√
a2 + b2 and tan θ = b/a. The number θ

is called the argument of z and is defined only up to 2π.
This representation is particlurly useful when combined with the imporant fact

know as Euler’s formula (see below). For t ∈ R one has:

eIt = cos t + I sin t

More generally, one has that

(2.1) e(µ+Iν)t = eµt(cos(νt) + I sin(νt))

One way to justify this formual is to note that it ensures that
d

dt
eλt = λeλt.
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even when λ ∈ C.

3. Linear Algebra of Complex Numbers

As we we say we can think of a complex number z = a + Ib as a real vector

v =
[
a
b

]
We then have 1 corresponding to e1 and I corresponding to e2. Where e1, e2 is the
standard basis of R2.

It turns out that many of the natural operations on z as a complex number can
be interpreted as a linear transformation on v. We will use this to illustrate some
ideas from last time. Lets consider the map z → z̄ that is let C be the function so
that C(z) = z̄. On vectors this is the map:

C :
[
a
b

]
→

[
a
−b

]
One checks that [

a
−b

]
=

[
1 0
0 −1

] [
a
b

]
and so C yields a linear trasformation on R2 with matrix[

1 0
0 −1

]
Notice if we apply complex conjugation twice we get back where we started. This
corresonds to the fact that the square of the associated matrix is the identity.

Fix a complex number w = c + Id and consider the function Mw(z) = wz. As
vectors this yields the map

Mw :
[
a
b

]
→

[
ac− bd
ad + bc

]
We can again check that [

ac− bd
ad + bc

]
=

[
c −d
d c

] [
a
b

]
And hence Mw can be thought of a linear map on R2×2 with associated matrix:[

c −d
d c

]
The rules of complex multiplication imply that Mw1+w2 = Mw1 + Mw2 . In par-
ticular, if A,A1 and A2 are the matrices in R2× corresponding to Mw1+w2 , Mw1

and Mw2 (respectively) then one can verify that A = A1 + A2. Similarly, one has
Mw1(Mw2(z)) = Mw1w2(z) and so if A,A1 and A2 are the matrices in R2× corre-
sponding to Mw1w2 , Mw1 and Mw2 then one checks that A = A1A2. An important
consequence is then that we can encode a complex number z = a + Ib as a 2 × 2
real matrix and all the complex algbra directly corresponds to matrix algebra.

Now consider Euler’s formula for w = c + Id. That is write w = reiθ with
r ≥ 0 and θ ∈ [0, 2π). As a consequence Mw(z) = Mr(MeIθ (z)) = MeIθ (Mr(z)) In
particular [

c −d
d c

]
=

[
cos θ − sin θ
sin θ cos θ

] [
r 0
0 r

]
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Notice we we’ve broken our matrix into a simple diagonal matrix and a matrix
that is also very simple (it is orthogonal). We will generalize this sort factoriztion
for arbitrary matrices (where the diagonal will become upper triangular). This is
called the QR factorization and is at the heart of all sorts of applications of linear
algebra.

4. Functions of a complex variable: NIC

The algebraic properties of complex numbers allow one to define polynomial
functions of a complex variable. That is for a polynomial

p(x) =
n∑

i=0

aix
i

it is clear what p(z) means for z = a + Ib a complex number. For more general
functions the same result can be accomplished by using a taylor series expansion
(when one exists). For instance if a function f has a taylor series expansion

f(x) =
∞∑

i=0

aix
i

on for |x| < R (here R is the radius of convergence). Then the function f makes
sense at complex values z so that |z| < R by setting

f(z) :=
∞∑

i=0

aiz
i.

One has to of course check this sum converges in an appropriate sense, but that is
beyond the scope of these notes.

The point is that this gives a rigorous justification for the Euler formula.
Namely, the Taylor series expansion for et is

et =
∞∑

n=0

tn

n!

which has infinite radius of convergence. We then have

eIt =
∞∑

n=0

(It)n

n!

But I4k = 1, I4k+1 = I, I4k+2 = −1 and I4k+3 = −I so this gives

eIt =
∞∑

n=0

(−1)nt2n

(2n)!
+ I

∞∑
n=1

(−1)(n− 1)t2n−1

(2n− 1)!

But the Taylor series expansions of of cos t and sin t are

cos t =
∞∑

n=0

(−1)nt2n

(2n)!
sin t =

∞∑
n=1

(−1)(n− 1)t2n−1

(2n− 1)!

So
eIt = cos t + I sin t

as claimed. The formula for a general complex number can be verified in a similar
manner.



CHAPTER 3

Third Lecture

We recall the definitions of basic linear algebra concepts such as spans of vectors,
linear independence, basis vectos and so on. We will also translate these concepts
into corresponding properties of matrices.

1. Basic Linear Algebra

Suppose we have a set of vectors v1, · · · ,vk in Cn. One very natural question
to ask is can we write every vector as a linear combination of the vj? If yes, one
further asks “how many” different ways are there to express the same vector in
terms of thevj . If no, which vectors fail to be so expressable and how many are
there.

To start making this precise we define the span of a set of vectors {vj} to be

the set of all vectors. Span(v1, . . . ,vk) =
{
w : w =

∑
j cjvj

}
. This is the largest

set of vectors we form from the set {vj} by only using linear algebra operations.
We say the vj are linearly independent if

c1v1 + . . . + ckvk = 0 ⇐⇒ 0 = c1 = . . . = ck

Otherwise we say the vj are linearly dependent.
A simple example: The vectors

v1 =

1
1
0

 ,v2 =

 1
−1
0


are linearly independent in R3. Their span is the plane z = 0. To show this
rigrously note that:

av1 + bv2 = (a + b)e1 + (a− b)e2 =

a + b
a− b

0


For this to equal 0 need a + b = 0 and a− b = 0. That is a = 0 and b = 0. Hence
the vectors are linearly independent. Checking the spanning property is similar.
Notice all this comes down to is solving ansystem of equations.

Another example: The vectors

v1 =

2
1
1

 ,v2 =

1
0
0

 ,v3 =

3
3
3


are not linearly independent. Indeed, v3 = 3v1 − 3v2. However any pair of the
vectors is linearly independent the span of all three vectors is a plane in R3.

13
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A final example: In general any collection of standard basis vectors ej1 , . . . , ejk

in Cn is linearly independent if k = n then the set spans Cn.
How do we determine if a given set of vectors spans some set? Is linearly

independent? As we sketched in the example above this is really a question about
systems of linear equations. Consequently, the best method to do this is to turn
the question into an equivalent question about matrices. We will then answer the
corresponding question for matrices. This will also give additional information. So
how do we turn this into a question about matrices? The point is that taking the
span span looks like taking lots of matrix multipications. That is let V be the n×k
matrix:

V =
(
v1 | · · · | vk

)
Then let

c =

c1

...
ck


then

V c =
k∑

j=1

cjvj

I.e. w is in the span of the vj if and only if there is a vector in c ∈ Ck so that
w = V c. We denote by Range(V ) or R(V ) the precisely the latter such set. That
is let A ∈ Cm×n be a matrix we define the range of A, Range(A) = R(A) ⊂ Cm by

R(A) = {w ∈ Cm : w = Ac for some c ∈ Cn}
We also refer to R(A) this as the Image of A or the Column space of A. Notice the
latter makes sense as R(A) is the span of the columns of A.

Similarly, we can use V to see when the vj are linearly independent. Again we
have the vj linearly independent if

0 =
∑

j

cjvj = V c ⇐⇒ c = 0

That is {vj} is linearly independent if and only if the only vectors that A multiplies
against to give 0 is the zero vector. For A ∈ Cm×n, we define Null(A) = N(A) ⊂
Cn, the null space of A, to be the set of vectors

N(A) = {v ∈ Cn : Av = 0}
This is sometimes refered to as the kernel of A. Hence we see that the vj are
linearly indepependent when and only when N(V ) = {0}.

Having transformed the problem to a question about matrices we need to dis-
cuss how to use this to actually solve the problem. The main way to do this is to
use Gaussian elimination. We’ll review this algorithm next lecture.

2. Spaces of Vectors and Basis Vectors

In order to make some of the preceding clearer, we introduce some further
mathematical definitions as well as state some important facts. The later will be
proved in a couple of lectures after we have some important tools.

For a matrix A ∈ Cm×n we have defined the range of A, R(A) as a subset of
Cm and the null space, N(A) as a subset of Cm. These sets are well behaved with
respect to the operations of linear algebra. More precisely, we say a set of vectors
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E ⊂ Cn is a vector space (or vector sub-space) if for any pair of vectors v,w ∈ E
and any scalar λ ∈ C one has λv ∈ E and v + w ∈ E. That is E is closed uner the
operations of linear algebra. Notice by taking λ = 0 we must alwasy have 0 ∈ E.
Note that Cn is a vector space as is {0} the set consisting only of the zero vector
0 ∈ Cn.

Notice that the span of any set of vectors vVi ∈ Cn, 1 ≤ i ≤ k is a vector
space. To see this let v,w ∈ Span(v1, . . . ,vk) then v =

∑k
i=1 civi,w =

∑k
i=1 divi.

Then using the algebraic properties of vectors one has v + w =
∑k

i=1(ci + di)vi

which is then clearly in the span. A similar argument shows λv is in the span. In
particular, as the range space of A is the span of the columns of A, R(A) ⊂ Cm

is a vector space. The null space of A, N(A) ⊂ Cn is also a vector space. To see
this let v,w ∈ N(A). Then Av = Aw = 0. Now A(v + w) = Av + Aw = 0 and
A(λv) = λ(Av) = λ0 = 0, hence v + w ∈ N(A) and λv ∈ N(A).

For a given vector space E we say that a set of vectors v1, . . . ,vk ∈ E are a
basis of E if E = Span(v1, . . . ,vk) and the set {v1, . . . ,vk} is linearly independent.
An easy example is that that the standard basis e1, . . . , en is a basis of Cn. One
important consequence of {v1, . . . ,vk} being a basis of E ⊂ Cn is that any vector
v ∈ E can be expressed uniquely in terms of the vi that is

v =
k∑

i=1

civi = V c

where here V ∈ Cn×k is the matrix with columns the vi and c ∈ Ck are the
coefficients of v with respect to the basis v1, . . . ,vk. It is a simple excercise to see
that N(V ) = {0} and R(A) = E. In particular, if we want to find the coefficients
c for a given vector v we must solve the equation:

V c = v.

Which consists of n equations in k unknowns.


