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CHAPTER 1

Seventh Lecture and Eighth Lecture

In this lecture we introduced the hermitian inner product and adjoint. These
are generalizations to the complex settings of the dot product and transpose which
are defined for real vectors and matrices. This is an amalgamation of the seventh
and eigth lectures.

1. Notation

We remind our selves of some notation before preceding further
Let A ∈ Cm×n be a m×n matrix. We’ve often expressed A as a set of columns:

A =
[
a1| . . . |an

]
here ai is also a m× 1 matrix We can also write A in terms of its rows

A =

a′1
...

a′m


where a′j is a 1× n matrix. As we’ve seen multiplying A on the right by a vector

v =

v1

...
vn


is the same as getting a linear combination of the columns, that is

Av =
n∑

j=1

vjaj

In a similar manner multiplying A on left by a row q =
[
q1 . . . qm

]
gives a

linear combination of the rows:

qv =
m∑

i=1

qia
′
i ∈ C1×n

We then have rules for matrix multiplication if B ∈ Cn×k and

B =
[
b1| . . . |bk

]
then

AB =
[
Ab1| . . . |Abn

]
Similarly, if we write

B =

 b′1
...

b′m
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then

AB =

a′1B
...

a′mB


In either case this yields:

AB =

a′1b1 · · · a′1bk

... a′ibj

...
a′mb1 · · · a′mbk


2. Adjoints

We now introduce an important formal operation on matrices. Let

A =

a11 · · · a1n

...
. . .

...
am1 · · · amn

 ∈ Cm×n, B =

b11 · · · b1m

...
. . .

...
bn1 · · · bnm

 ∈ Cn×m

We say that B is the hermitian conjugate or adjoint of A when and only when
bij = āji and write B = A∗. Another way to think about this is: Let v ∈ Cm be
the vector v = (v1, . . . , vm). we define v∗ = [v̄1, . . . , v̄m]. For a matrix A ∈ Cm×n

we write A =
[
a1| · · · |an

]
and define

A∗ =

a∗1
...

a∗n


When A ∈ Rm×n is a real matrix we have that āij = aij and so all are doing
when taking the adjoint is flipping. You’ve probaby see this before and called it
the transpose A>.

An important class of matrices are the hermitian and symmetric matrices. A
hermitian matrix is one so that A∗ = A. A symmetric matrix is just a hermitian
matrix that has real entries (and so A> = A). Notice any such matrix (in either
case) is square.

3. Inner Products

We may think of a vector v ∈ Cn as a n× 1 matrix. Hence we can write v∗ to
get a 1× n matrix. We define the innerproduct of two vectors v and w ∈ Cn as:

〈v,w〉 = v∗w

Notice that when the vectors have real entries (i.e. v,w ∈ Rn) this is just the
usual dot product. This suggests we use the inner product to define a notion of
“length” of a vector. That is set:

||v||2 =
√

v∗v ≥ 0.

We point out that v∗v ≥ 0 for any vector so the squareroot is okay. We included
complex conjugation precisely to achieve this. When v,w ∈ Rn we can really
geometrically think of ||v||2 as the length of v and v∗w = ||v||2||w||2 cos α where
α is the angle between v and w. For complex vectors this geometric interpretation
doesn’t make as much sense, but is still useful for intuition.
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Some useful properties (left as an exercise). Bilinearity of the innerproduct:

(v1 + v2)∗w = v∗1w + v∗2w

v∗(w1 + w2) = v∗w1 + v∗w2

(αv)∗(βw) = ᾱβv∗w

These all follow from properties of matrix multiplication. Note this implies ||λv||2 =
|λ|||v||2. The innerproduct satisfies the following inequality known as the Cauchy-
Schwarz inequality:

|v∗w| ≤ ||v||2||w||2.
with equality if and only if the v and w are collinear. The length also satisfies the
so called triangle inequality :

||v + w||2 ≤ ||v||2 + ||w||2.
Note that both of these are easily shown for real vectors and have nice geometric
intrepretations, but they also hold for complex vectors.

For general matrices A ∈ Cm×n and B ∈ Cn×k one has (AB)∗ = B∗A∗. In
particular if v ∈ Cm and w ∈ Cn then v∗(Aw) = (A∗v)∗w. That is

〈Av,w〉 = 〈v, A∗w〉
This last fact is really key and we will return to it soon.

4. Orthogonality

One useful thing to use the inner product for is to tell if two vectors are or-
thogonal. We say v and w are orthogonal if v∗w = 0. If the vectors are real then
this means geometrically that they are perpendicular. An example ei and ej are
orthogonal when i 6= j.

We say that two sets of vectors E and F (not neccesarily vector spaces) are
orthogonal if whenever v ∈ E and w ∈ F one has v∗w = 0. A set of non-zero
vectors S is orthogonal if for any v ∈ S,w ∈ S with v 6= w one has v∗w = 0. This
set is orthonormal if in addition ||v||2 = 1 for all v ∈ S. Examples include the
standard basis and the vectors

1/
√

2
[

I
−I

]
, 1/

√
2

[
1
1

]
∈ C2.

Probably the most important thing about orthogonality for our purposes is
that it is a simple condition that ensures linear independence.

Theorem 4.1. (2.1 in T-B) The vectors in an orthogonal set S are linearly
independent.

Proof. Suppose one has vi ∈ S (i = 1..l) that are linearly dependent. Then
we can write vk =

∑l
i=1 civi where ck = 0 and vk. Then v∗kvk = v∗k

∑l
i=1 civi =∑l

i=1 civ∗kvi by the bilinearity . The orthogonality says that the left hand side
equls ckv∗kvk = 0. However, this implies vk = 0 which is impossible. �

One consequence is that if S ⊂ Cm is an orthogonal set then S is a basis of
span(S). We refer to such a basis as an orthonormal basis if in addition for v ∈ S
||v||2 = 1. If S ⊂ Cm and there are m vectors in S then S is a basis of Cm. Note
by normalizing one can always go from an orthogonal set to an orthonormal set.
One good property of an orthonormal basis is that it is easy to find the coefficients
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of a vector with respect to the basis using the inner product. Namely, if v1, . . . ,vk

are an orthormal basis of E ⊂ Cm then We can write v ∈ Cm as

v =
k∑

i=1

〈vi,v〉v =
k∑

i=1

(v∗i v)v

i.e. the coefficients are v∗i v.

5. Unitary Matrices

We now introduce an important class of matrices that are related to what
we just discussed. The idea is that while a basis corresponds to a non-singular
matrix, an Orthonormal basis corresponds to a Unitary matrix. Since expanding
components in an orthonormal basis is easier than doing it for a generic basis, so
finding inverses for unitary matrices is easier than for non-singular matrices.

We say Q ∈ Cm×m is unitary if Q∗ = Q−1 (if Q ∈ Rm×m say is it is orthogonal).
That is if Q∗Q = QQ∗ = I. It straight forward to check that if Q =

[
q1 | . . . | qm

]
then Q∗ =

q∗1
...

q∗m

 so

Q∗Q =

q∗1q1 . . . q∗1qm

...
. . .

...
q∗mq1 . . . q∗mqm


So Q unitary if and only if the columns form an orthonormal basis. In particular
Q∗b gives the coefficients of b in the orthonormal basis given by the columns of
Q. Two important additional properties of unitary matrices are that they preserve
innerproduct and 2−norm i.e. (Qv)∗(Qw) = v∗Q∗Qw = vV ∗w. and So ||Qv||2 =
||v2||.

For real matrices this has the geometric interpretation that Q is given by a
rigid motion fixing the origin. For instance rotation about the origin or reflection
through any line (or plane etc) through the origin.

Example: we check that rotation is Unitary.

A =
[
cos θ − sin θ
sin θ cos θ

]
then A∗A = A>A = Id is a straight forward computation.


