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CHAPTER 1

Ninth and Tenth Lectures

In this Lecture I started to discuss complementary decompositions of vector
spaces as well as projectors.

1. Orthogonal Projections

One of the key uses of inner products is that they allow one to decompose
arbitrary vectors into orthogonal components. This often simplifies a problem sub-
stantially. We say this already when one has a basis but the idea is more general.

The basic idea: Let S = {v1, . . . ,vk} be an orthonormal set of vectors. For w
an arbitrary vector we have that v∗i w is a scalar. If we write

r = w − (v∗1w)v1 − (v∗2w)v2 − . . .− (v∗kw)vk

Then it is straight forward to check that r is orthogonal to S that is we can write:

w = r + (v∗1w)v1 + (v∗2w)v2 + . . . + (v∗kw)vk = r +
k∑

i=1

(viv∗i )w

so all the summand vectors are orthogonal. Note the second equality just uses the
fact that scalar multiplication can be commuted.

Notice that if the vi form a basis then r = 0. That is we have expressed w in
terms of the basis vi in a relatively painless manner. This is one of the real powers
of inner products and orthogonality.

I point out also that when I rewrote the expansion in terms of (viv∗i )w I
wasn’t doing much mathematically but the interpretation is important. The poin
this viv∗i is now a square matrix Pi that one can check preserves any vector λvi

(i.e. Pi(λvi) = λvi and has Null(Pi) the space of vectors orthogonal to vi. That
is Pi is the projection matrix onto vi. These are important special cases of a more
general type of matrix that will be important for us.

Notice that philosphically the two expansions are different. The first we view
w as coefficients v∗i w times the vi plus some left over term r while in the second
we view w as the sum of vectors (viv∗i )w given by projecting plus some left over
term r. projections

We come up with a more general concept of orthogonal projection if we let

P =
k∑

i=1

(viv∗i )

then w = Pw + r. Here P is m×m matrix with rank k. P gives projection onto
the span of the vi. For instance if k = 2 this is projection onto a plane. We point
out that P 2 = P and P ∗ = P . I.e. P is idempotent and hermitian. We will return
to this soon.
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4 1. NINTH AND TENTH LECTURES

2. Sums of vector spaces

In order to get a better sense of what is going on with orthogonal projection
we need some ideas about vector subspaces. It will also help to take a slightly more
general point of view.

To that end let us suppose that we have two vector spaces E1, E2 ⊂ Cn. We
denote by E1 + E2 the vector space so that w ∈ E1 + E2 when and only when
there are v1 ∈ E1,v2 ∈ E2 so that w = v1 +v2. It is straightforward to check that
E1 + E2 is a vector space and I leave it as an excercise.

An important fact is that if E1 ∩ E2 = {0} then each w ∈ E1 + E2 can be
written UNIQUELY as w = v1 + v2 where v1 ∈ E1 and v2 ∈ E2. To see this
suppose that w = v1 +v2 and w = v′1 +v′2 where vi,v′i ∈ Ei. By equating the two
sides we have v1 + v2 = v′1 + v′2 that is v1 − v′1 = v′2 − v2 we denote the common
value by v. Notice the left hand side is in E1 while the right hand side is in E2 and
so v ∈ E1 ∩ E2 and so v = 0. In other words v1 = v′1 and v2 = v′2.

We will mostly be interested in situations where E1 and E2 span Cn that is
E1 + E2 = Cn and E1 ∩ E2 = {0}. In this case we say that E1 and E2 are
complimentary. The idea here is now that any vector w ∈ Cn can be written as
w = v1 + v2 where vi ∈ Ei.

For example: Let {bi} be a basis of Cn, i = 1, . . . , n if E1 = span {b1, . . . ,bk}
and E2 = span {bk+1, . . . ,bn} then E1 and E2 are complementary subspaces.

One important task is: Given two complementary vector spaces E1, E2 in Cn

we know that for any w ∈ Cn we have w = v1 + v2 with vi ∈ Ei and this
decomposition is unique. The question is to what extent can we determine v1 from
w.

We claim that in fact there is a fairly straightforward answer to this question.
Namely there is a n×n matrix P so that v1 = Pw. Such a P is called a projector.
We will return to them in a bit.

Before disucssing projectors we wish to point out one final thing. If E1 and
E2 are orthogonal subspaces in Cn and they span Cn then they are automatically
complementary (any v ∈ E1 ∩ E2 would satisfy 〈v,v〉 = 0). In this case E1 and
E2 are said to be orthogonal complements. We’ve already seen that it is fairly
straightforward to find the orthogonal projector in this case. Indeed, let us use our
fact that we can find {q1, . . . ,qk} an orthonormal basis of E1 then as we’ve seen
for any w ∈ Cn

w = (
k∑

j=1

qjq∗j )w + r

where r is orthogonal to the qi and hence to E1 and so lies in E2. In particular our
projector in this case is P =

∑k
j=1 qjq∗j .

3. Projectors

As mentioned in the previous section for any pair of complementary spaces
E1, E2 ⊂ Cn there are matrices P1 and P2 in Cn×n so that P1w ∈ E1 and P2w ∈ E2

and w = P1w + P2w. We then call the Pi projectors.
To see this we argue as follows. Let e1, . . . , en be the standard basis of Cn. For

each i the fact that E1 and E2 is orthogonal allows us to write

ei = ai + bi
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so that ai ∈ E1 and bi ∈ E2 and the ai and bi are neccesarily unique. We then
set:

P1 =
[
a1| · · · |an

]
, P2 =

[
b1| · · · |bn

]
.

And claim that P1 and P2 are the desired matrices. To see this it suffices to show

Lemma 3.1. Let v ∈ E1 then P1v = v and P2v = 0.

Proof. Write v =
∑n

i=1 viei =
∑n

i=1 vi(ai + bi) =
∑n

i=1 viai +
∑n

i=1 vibi.
Notice that the first summand is in E1 while the second is in E2. Since we can also
write v = v + 0 where the first summand is in E1 and the second is in E2 by the
uniquess of the decomposition (as E1 and E2 are complementary we have

v =
n∑

i=1

viai

and

0 =
n∑

i=1

vibi

One the other hand, P1v = P1 (
∑n

i=1 viei) =
∑n

i=1 viai and P2v =
∑n

i=1 vibi. �

Corollary 3.2. If w ∈ Cn then P1w ∈ E1 and P2w ∈ E2 and w = P1w +
P2w.

Proof. The columns of P1 are in E1 so R(E1) ⊂ E1 and similarly R(P2) ⊂ E2.
Now write w = w1+w2 with w1 ∈ E1 w2 ∈ E2. We see that P1w = P1(w1+w2) =
P1w1 + P1w2 = w1 by the proceeding lemma. Similarly, P2w = w2. �

Notice that this proof is not constructive so we don’t have a good way to find
P .

4. Projectors

It is useful to formalize the notion of a projector as a property inherent to a
matrix. This allows us to more easily answer and manipulate questions about com-
plementary subspaces. To that end, we say a n×n matrix P is an oblique projector
(or just projector) if P 2 = P (such a property is often called begin idempotent).
Notice that Lemma 3.1 implies that the matrix P1 is a projector in this sense.

Once you have a projector P , you can get a different projector Q = I−P called
the complementary projector. We check this as follows: Q2 = (I − P )2 = I − P −
P + P 2 = I − P = Q. Note that P is then the complementary projector of Q. A
useful fact is that N(P ) = R(Q) and N(Q) = R(P ). Check this: w = Qv = v−Pv
then P (v) − P 2(v) = 0. So R(Q) ⊂ N(P ). On the other hand if Pv = 0 Then
Qv = v− Pv = v. Note if P1 is the projector of the proceeding section then P2 is
the complementary projector.

As we saw given a pair of complementary spaces E1 and E2 we obtain comple-
mentary projectors P1 and P2. The converse is also true, namely, suppose that we
are given a projector P an n×n matrix and let Q be the complementary projector.
The previous fact allows us to see immediately that R(P ) and R(Q) are comple-
mentary subspaces of Cn. Indeed, for any vector w ∈ Cn we have w = Pw + Qw.
To check this, we need to check that any vector w can be written as the sum of
avector in the range of P and a vector in the range of Q and that this is unique.
The first is obvious Pw + Qw = Pw + (I − P )w = w. The second uses our fact.
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I.e. if w ∈ R(P ) ∩ R(Q) then w ∈ R(Q). But then by above w ∈ N(P ). But
w ∈ R(P ) so w = Pv so 0 = Pw = P 2v = Pv = w.

That is given a projector we obtain a pair of complementary subspaces for
which the projector tells us how to decompose.

5. Orthogonal Projectors Revisited

We now return to the concept of Orthogonal Projector. We say a projector
is orthogonal provided the R(P ) and R(Q) are orthogonal subspaces, i.e. are or-
thogonal complements. It is important to note that orthogonal projectors are NOT
orthogonal or unitary matrices.

They are however hermitian matrices and in fact this characterizes them. That
is we have the following

Theorem 5.1. A projector P is an orthogonal projector if and only if P ∗ = P .

Proof. (⇐) Let Q = I − P be complementary projector. If w ∈ R(Q) then
w = Qv = v − Pv for some v. Now let a ∈ R(P ) so a = Pb. Then 〈w,a〉 = 〈v −
Pv, Pb〉 = 〈P ∗v−P ∗Pv,b〉 Now using P = P ∗ this gives 〈Pv−P 2v,b〉 = 〈0,b〉 =
0. (⇒) In order to show this we must use the fact that any E ⊂ Cn a vector space
admits an orthonormal basis. We will show this in a couple of lectures. We know
that R(P ) and R(Q) are orthogonal compliments. Let x1, . . . ,xk be an orthonormal
basis of P and let xk+1, . . . ,xn be an orthonormal basis of R(Q). Notice that then
x1, . . . ,xn is then an orthonormal basis of Cn. Now, Pxj = 0 for k + 1 ≤ j ≤ n as
such xj ∈ R(Q) = Null(P ). On the other hand Pxj = xj for 1 ≤ j ≤ q. This is
because xj = Px′j but then Pxj = P 2x′j = Px′j = xj . Thus, in terms of the basis
{x1, . . . ,xn} P looks pretty nice. Let X =

[
x1| · · · |xn

]
be the n×n matrix with

columns xi. Notice that X is unitary. Given a general vector v, v =
∑

j cjxj where
c = X−1v = X∗v. In particular, Pv = P (

∑
j cjxj) = XIdkc = XIdkX∗v. Here

Idk is matrix with 1 along diagonal for first k rows and then 0s elsewhere. In other
words P = XIdkX∗. Then P ∗ = (XIdkX∗)∗ = (X∗)∗Id∗kX∗ = XIdkX∗ = P . �

One final remark: Given a subspace E, there are lots of complementary sub-
spaces. These correspond to different oblique projectors P with R(P ) = E. How-
ever, it is not too hard to see that there is only one orthogonal projector P⊥ with
R(P⊥) = E. Equivalently, there is only one complementary subspace that is or-
thogonal.



CHAPTER 2

Eleventh and Twelfth Lectures

In this lecture I started talking about the four fundamental spaces associated
to a matrix.

1. Orthogonal Complement

One bit of notation I do want to introduce. Given E ⊂ Cn a vector space I will
denote by

E⊥ = {v ∈ Cn : 〈v,w〉 = 0,w ∈ E}
this is the orthogonal complement of E. It is clear that E⊥ is a vector space and
that E and E⊥ are orthogonal. We claim also that E +E⊥ = Cn, that is E,E⊥ are
orthogonal complements. We also claim that if P is an orthogonal projector with
R(P ) = E then E⊥ = R(I − P ). Similarly, given E there is exatly one orthogonal
projector P so that R(P ) = E and then E⊥ = R(I − P ).

2. Four fundamental spaces of a matrix

Let A be a m× n matrix. We then have two natural vector spaces associated
to A. Namely N(A) ⊂ Cn and R(A) ⊂ Cm. The null space and column space of
A. Notice that it is important to think of these as being in different spaces (even
if m = n). We now introduce two more important subspaces associated to A as we
will see these turn out to be orthogonal complements of the original two.

The first of these is the row space of A. We denote this by Row(A) ⊂ Cn and
we set Row(A) := R(A∗). Notice this is essentially the span of the rows, however
we have taken an adjoint in order to make the rows vectors. The second of these
is called the Left Null Space and is denoted by L − Null(A) ⊂ Cm and we set
L−Null(A) := N(A∗).

Notice that the row space sits in Cn along with N(A), while the left null space
sits in Cm along with R(A). We justify the terminology for left null space as
follows: Basically it consists the rows which when multipliel agains A on the left
give 0 (using the adjoint to turn rows into vectors).

It turns out that Row(A) = R(A∗) and N(A) are orthogonal complements
in Cn and L − Null(A) and R(A) are orthogonal complements in Cm. That is
Row(A) = N(A)⊥ and L −Null(A) = R(A)⊥. Taken together all four spaces are
known as the four fundamental spaces of the matrix A.

To prove this it suffices to restrict attention to N(A) and R(A∗). As we will see
this is enought. We first verify these two spaces are orthogonal: Take v ∈ R(A∗)
and w ∈ N(A). So v = A∗v′ for v′ ∈ Cm. Then 〈v,w〉 = 〈A∗v′,w〉 = 〈v′, Aw〉 =
〈v′, 0〉 = 0.

In order to complete the claim we must still show that R(A∗) + N(A) = Cn.
To do this we will actually show something about the dimension of these spaces.
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Namely, dimR(A∗)+dimN(A) = n i.e. the dimension of the row space is the same
as the dimension of the null space.

To see this we use Gaussian elimination. The point is that for each column
operation we can do on A there is a corresponding row operation we can do on A∗.
More precisely, suppose one gets B ∈ Cm×n from A by a column operation. Then
one gets B∗ from A∗ by a row operation.

As an example consider

A =
[
a1| · · · |an

]
and let

B =
[
a1 + a2| · · · an

]
(i.e adding second column to the first) then

A∗ =

a∗1
...

a∗n


and

B∗ =

(a1 + a2)∗
...

a∗n

 =

a∗1 + a∗2
...

a∗n


which is adding second row to the first. Similarly row operations on A become row
column operations on A∗.

A consequence of this fact is that (rref(A))∗ = cref(A∗). That is:

Lemma 2.1. Let A ∈ Cm×n then (rref(A))∗ = cref(A∗) and (cref(A))∗ =
rref(A∗).

Proof. It is straightforward to check that if a matrix B is in row reduced
echelon form (rref) then B∗ is in column reduced echelon form (cref). (Go back
to the definition to convince yourself). Since hence rref(A)∗ is in cref and since
rref(A) is obtained from A by a finite number of row operations, rref(A)∗ is
obtained from A∗ by a finite number of column operations. By the uniqueness of
cref(A∗) we then see that cref(A∗) = rref(A). �

As a consequence fo this, the number of pivots in rref(A) is the same as the
number of pivots of cref(A∗) and number of pivots of cref(A) is same as number
of pivots of rref(A∗). An important fact we have already used was that for an
arbitrary m× n matrix B, dimR(B) was the number of pivots (say k) of cref(B).
Similarly, if the number of pivots of rref(B) is l then dimN(A) = n − l. Hence
dimN(A) is n− k where k is the number of pivots of rref(A). However, rref(A)∗

has the same number of pivots as cref(A∗) and so we have dimR(A∗) = k. Hence
dimN(A) + dimRow(A) = n as claimed.

We can now show that R(A∗) and N(A) are orthogonal complements. Notice
we’ve already shown they are orthogonal. Pick a basis v1, . . . ,vk of R(A∗) and a
basis vk+1, . . . ,vn of N(A). Notice the numbers of vectors is right as dimRow(A)+
dimN(A) = n. We claim v1, . . . ,vn is a basis. Its enough to check that it is linearly
independent. Suppose that

∑n
i=1 civi = 0 =

∑k
i=1 civi +

∑n
i=k+1 civi. But then

(by uniqueness of the decomposition)
∑k

i=1 civi = 0 and
∑n

i=k+1 civi. Then by
linear independence in R(A∗) and N(A) ci = 0 for all i.
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We now can conclude that L−Null(A) and R(A) are orthogonal complements.
To see this it is enough to notice that R(A) = Row(A∗) and L−Null(A) = N(A∗).
And use what we already showed only for A∗ instead of A.

3. Relations amongst the Fundamental Spaces

We can now get useful relationships between the sizes of the fundamental spaces
of A.

Theorem 3.1. Let A ∈ Cxm×n then dimR(A) = dimR(A∗) i.e the dimension
of the row space is the same as that of the column space.

Proof. Pick v1, . . . ,vk a basis of R(A∗) and vk+1, . . . ,vn a basis of N(A).
As we saw above the set v1, . . . ,vn is a basis of Cn. Now let wi = Avi. Notice
that wi = 0 for k + 1 ≤ i ≤ n. We claim however, that for 1 ≤ i ≤ k, the
wi form a basis of R(A). Lets check they are linearly independent. Suppose
0 =

∑k
i=1 ciwi = A

∑k
i=1 civi. Hence v =

∑k
i=1 civi ∈ N(A). But v ∈ R(A∗) (by

our set up) so must have v = 0. However, as the vi are a basis, all the ci = 0. Let’s
check they span R(A). Pick w ∈ R(A). Write w = Rv. Now as N(A) and R(A∗)
are complementary in Cn we can write v = a + b where a ∈ N(A) and b ∈ R(A∗).
Then w = Av = A(a + b) = Aa + Ab = Ab. Now write b =

∑k
i=1 civi. Then

w = Ab =
∑k

i=1 ciwi so the wi span R(A). Thus dimR(A) = k = dimR(A∗). �

Corollary 3.2. Let A ∈ Cm×n then dimR(A) is the number of pivots in
rref(A).

Corollary 3.3. (Rank-Nullity Theorem) Let A ∈ Cm×n then dimR(A) +
dimN(A) = n.

4. Other Facts about the fundamental spaces

A good example of using the four fundamental subspaces is the following fact:

Proposition 4.1. Let A ∈ Cm×n then A∗Av = 0 if and only if Av = 0.

Proof. If Av = 0 then it is clear that A∗Av = 0. On the other hand, if
A∗Av = 0 then Av is in N(A∗) i.e. in L − Null(A). On the other hand Av
is clearly in R(A). That is Av ∈ L − Null(A) ∩ R(A) but these two spaces are
complements so Av = 0. �

Let us pick out a matrix factorization from the proof of Theorem 3.1. Pick an
orthonormal basis vi of Cn so that v1, · · · ,vk is an orthonormal basis of R(A∗)
and vk+1, · · · ,vn is an orthonormal basis of N(A) (well see why we can do this
next lecture). Similarly, pick a basis of Cm wj so that w1, . . . ,wk is a orthonormal
basis of R(A) and wk+1, . . . ,wm is an orthonoraml basis of L−Null(A). Then

A = W

[
Â 0
0 0

]
V −1 = W

[
Â 0
0 0

]
V ∗

Where Â is a k×k non-singular matrix. And the values 0 specify a k×(n−k) matrix
with all zero entries, a (m−k)×k matrix with all zero entries and a (m−k)×(n−k)
matrix with all zero entries.


