
Lecture Notes for Math 104: Fall 2010 (Week 5)

Jacob Bernstein

CHAPTER 1

Thirteenth Lecture

We discussed the Gram-Schmidt Orthogonalization and began discussing the
QR factorization of a matrix.

1. Gram-Schmidt Orthogonalization

We’ve mentioned a number of times already that given a basis v1, . . . ,vk of
E ⊂ Cn one can construct an orthonormal basis q1, . . . ,qk of E. We will give you
a simple algorithm for doing this. By doing so we give a proof of the existence of
such a basis (since we already know every space has some basis).

There are a number of ways to do this, I’m going to start with the classical
Gram-Schmidt procedure. This is the easiest orthogonalization procedure from
a theoretical point of view, however computationally it has some problems (it is
unstable, in other words the rounding errors on a computer can cause major prob-
lems).

The basic idea is to start with a given basis and to produce an orthonormal
basis. The method to do so is iterative. Namely let v1, . . . ,vk be a basis of E ⊂ Cn.
We proceed as follows: Start with v1 and let E1 = span {v1}. We want to find
an orthonormal basis of E1. This is easy: set q1 = v1/||v1||2. Notice that v1 6= 0
(otherwise it couldn’t be part of a basis. Now let E2 = span(v1,v2) = span(q1,v2).
We want to find an orthonormal basis of E2 this is a little bit harder as q1 and v2

need not be orthogonal. But notice that Pq1v2 6= v2 and if we let q̂2 = v2−Pq1v2 =
P⊥q1v2 = v2−〈q1,v2〉q1 then q̂2 ∈ E2 is non-zero and 〈q1, q̂2〉 = 0. Hence we can
set q2 = q̂2/||q2||2. The reason this works is if Pq1v2 = v2 then one would have
that v2 ∈ span(q1) = span(v1) i.e. v2 and v1 would be linearly dependent.

Inductively, we have a method that takes {v1, . . . ,vk} and gives {q1, . . . ,ql,vl+1, . . . ,vk}
where Ej = span {q1, . . . ,qj} = span {v1, . . . ,vj} and {q1, . . . ,qj} is an orthonor-
mal basis of Ej here 1 ≤ j ≤ l. We now wish to produce ql+1 from vl+1 so that
now q1, . . . ,ql+1 is a orthonormal basis for El+1 = spanv1, . . . ,vl+1.

To do this we again note that if we set q̂l+1 = vl+1 − PEl
vl+1 = vl+1 −∑l

j=1〈qj ,vl+1〉qj . Then q̂l+1 is non-zero and orthogonal to each qj 1 ≤ j ≤ l.
Setting ql+1 = q̂l+1/||q̂l+1||2. Then provides the iteative step. Again we have used
the fact that the vi are linearly independent to ensure that q̂l+1 6= 0.

Iterating this k times produces the desired q1, . . . ,qk.
We can write this algorithm in pseudo-code as:

For j = 1 to k aj = vj

For i = 1 to j − 1
rij = q∗i vj

aj = aj − rijqi

rjj = ||aj ||2 qj = aj/rjj

3

4 1. THIRTEENTH LECTURE

Where this has numerical problems is when the vi are close to parallel.

2. The QR factorization

We are now going to apply this idea of orthogonalization to a matrix. The idea
is to look at a matrix A ∈ Cm×n and try and get an orthonormal basis for the
column space of A. But we are actually going to be more careful than that.

Consider the columns of A so we have

A =
[
a1| · · · |an

]
We get a whole sequence of spaces E1 = span(a1), E2 = span(a1,a2), . . . , En =
span(a1, . . . ,an). So E1 ⊂ E2 ⊂ . . . ⊂ En = R(A). What we want to do is in sense
get an orthonormal basis for all of these subsets. That is find an orthonormal set
q1, . . . ,qk so that E1 = span(q1), E2 = span(q1,q2), . . . , En = span(q1, . . . ,qk).
Being able to do this will be equivalent to given a good factorization of the matrix
A. Notice that by a dimension count we are implicity assuming that the a1, . . . ,ak

are linearly independent.
Well starting from an arbitrary A ∈ Cm×n and assume for this discussion that

m ≥ n and that A has full rank (i.e. n). This later condition implies that the
columns are linearly independent. If we can find qi ∈ Cm as desired then we have

a1 = r11q1,a2 = r12q1 + r22q2, . . . ,an = r1nq1 + . . . , rnnqn

Notice this is equivalent to the matrix factorization

[
a1| · · · |an

]
=

[
q1| · · · |qn

]


r11 r12 · · · r1n

0 r22 · · · r2n

...

. . .
...

0 · · · 0 rnn


That is

A = Q̂R̂

where Q̂ ∈ Cm×n has columns that are the orthonormal vectors qi for 1 ≤ i ≤ n
and R̂ ∈ Cn×n is upper triangular. This is called the reduced QR factorization

For certain purposes it is convenient to have a different form of the factorization.
That is we want to replace the Q̂ term by a unitary term Q. As m ≥ n, we can
do this by adding extra elements to Q that complete the columns fo Q to an
orthonormal basis of Cm. Namely let qn+1, . . . ,qm ∈ Cm be an orthonormal basis
of R(A)⊥ = L − N(A). Then one has that q1, . . . ,qm is an orthonormal basis of
Cm so in particular

Q =
[
q1| · · · |qm

]
∈ Cm×m

Is unitary.
Then setting

R =
[
R̂
0

]
,

so R ∈ Cm×n is still upper triangular we obtain the full or unreduced QR factor-
ization as

A = QR.

2. THE QR FACTORIZATION 5

Notice that the span of the “silent” columns in the full QR factorization are
precisely an orthonormal basis of R(A)⊥ = L−Null(A).

One important geometric interpretation the full QR factorization allows is the
following: The range of the matrix R is precisely the n-dimensional subspace of Cm

where the last m − n entries are zero. For instance if m = 3 and n = 2 then the
range of R is exactly the plane with third component zero. The matrix Q then acts
as a sort of “rotation” which allows us to obtain all other n-dimensional subspaces.
One way to think of this is that the Q tells us where R(A) sits in Cm while R tells
us how vectors in R(A) and in Cn are identified.

CHAPTER 2

Fourteenth Lecture

We introduced the QR factorization in the last lecture. We discuss it in a bit
more depth.

1. The QR factorization

Recall, the QR factorization worked by starting with a matrix A ∈ Cm×n where
m ≥ n and A with full rank (i.e. dim R(A) = n). We write

A =
[
a1| · · · |an

]
.

The reduced QR factorization is a factorization:

A = Q̂R̂

where Q̂ ∈ Cm×n has columns

Q̂ =
[
q1| · · · |qn

]
where {qi} ∈ Cm are an orthonormal set of vectors and R̂ ∈ Cn×n is upper trian-
gular. It is straight forward to verify that span(a1, · · · ,ak) = span(q1, · · · ,qk) for
1 ≤ k ≤ n.

For certain purposes it is convenient to have the so called full QR factorization
Here

A = QR

where
Q =

[
q1| · · · |qn qn+1| · · · |qm

]
is now in Cm×m and is unitary. We then have R ∈ Cm×n still upper triangular.
Notice that then the bottom rows must be all zero then. The additional vectors
qn+1, . . . ,qm are “silent” and are arbitrary as long as they an orthonormal basis
of R(A)⊥ = L−Null(A).

We are also interested in the case where A does not have full rank. In this case
there is still a QR factorization. We just have to modify our algorithm a bit.

Theorem 1.1. Every A ∈ Cm×n with (m ≥ n) has a full QR factorization.

Proof. We will actually construct a reduced QR factorization of A and then
complete it to a full QR factorization as needed. The proof is just the Gram-
Schmidt algorithm. However, we can no longer ensure that the columns of A
are linearly independent. In particular it may happen that span(a1, . . . ,aj) =
span(a1, . . . ,aj+1).

More precisely. Start with a1 if a1 = 0 choose q1 an arbitrary unit vector and
in this case take r11 = 0. If a 6= 0 set q1 = a1/||a1||2 take r11 = ||a1||2. Notice in
both cases:

a1 = r11q1.

7

8 2. FOURTEENTH LECTURE

Now proceed inductively: That is suppose we’ve gotten q1, . . . ,qk from a1, . . . ,ak.
Notice that in this case span(q1, . . . ,qj−1) ⊃ span(a1, . . . ,aj−1) We want to find
qj . To do so, we (as before) set rij = 〈aj ,qj〉 and q̂j = aj −

∑
i = 1j−1rijqj . By

the bilinearity of the inner product 〈q̂j ,aj〉 = 0. If q̂j = 0 we take rjj = 0 and pick
qj to be any unit vector orthogonal to q1, . . . ,qj−1 otherwise set rjj = ||q̂j ||2 and
qj = r−1

jj q̂j . Then

aj =
j∑

i=1

rijqj

Hence, if we set
Q̂ =

[
q1| . . . qn

]
and

R̂ =


r11 r12 · · · r1n

0 r22 · · · r2n

...
. . .

...
0 · · · 0 rnn


we obtain a reduced QR factorization of A. To get the full QR factorization we
can add the silent columns as before. That is we find qn+1, . . . ,qm forming an
orthonormal basis of span(q1, . . . ,qm). �

Remark 1.2. Notice that R(A) ⊂ span(q1, . . . ,qm) with equality only when
A has full rank. One consequence is that the silent columns qn+1, . . . ,qm while
lying in L−Null(A) no longer need to form a basis. Another consequence is that
A has full rank when and only when rii 6= 0 for all i = 1, · · · , n.

Remark 1.3. One may wonder how to find qj when rjj = 0. Notice that we
want qj to be orthogonal to each qi for 1 ≤ i ≤ j − 1. That is if we set

Q̂j−1 =
[
q1| · · · qj−1

]
∈ Cm×(j−1)

we need Q̂j−1qj = 0 and ||qj ||2 = 1. Another way to think about this that
qj ∈ Q̂∗

j−1) so qj can be found by Gaussian elimination (though there is likely a
more efficient algorithm).

The full QR factorization tends not to be unique. This is because silent columns
are not specified by the algorithm. While this is not an issue with the reduced QR
factorization. There is still non-uniqueness in this case. To see this, note one can
multiply the ith column of Q̂ by some λ ∈ C so that |λ| = 1 and get a new matrix
Q̂′ which still has orthonormal columns, if one multiplies the ith row of R̂ by λ−1

to get R̂′ then this is still upper triangular and Q̂R̂ = Q̂′R̂′. This corresponds to
the arbitrary choice that one makes in the Gram-Schmidt algorithm.

However, there is uniqueness if A is full rank and one demands R̂ have a special
form.

Theorem 1.4. For each A ∈ Cxm×n with m ≥ n and so that A has full rank
there is a unique reduced QR factorization

A = Q̂R̂

So that the diagonal entries of R̂ are positive real numbers (i.e. rii > 0).

2. SOLVING A SYSTEM VIA QR FACTORIATION. 9

Proof. If we look at the proof of the preceeding theorem we see that every-
thing is determined except the“sign” of rii. If we insist that rii > 0 then we are
done. �

2. Solving a System via QR factoriation.

One thing the QR factorization allows us to do is to solve systems. Let A ∈
Cm×m be non-singular matrix (i.e. of full rank). And fix b ∈ Cm. We want to
solve

Ax = b

The usual way is to use Gaussian elimination, which in a sense is a better approach
to this specific problem. First theroem of this lecture there is a QR factorization
of A and as m = n the reduced is the same as the full so we write

A = QR

Here Q is unitary and R is upper triangular with no non-zero entries on the diagonal.
This latter fact follows as A is non-singular.

Hence, one has
Rx = Q∗b

Now we are solving a system of equations where the system consists of an upper
triangular matrix. This can easily be solved by back-substitution.

An example: Let

A =

0 −3 0
0 4 1
4 0 1


And lets solve

Ax =

1
0
0


To start

a1 =

0
0
4

 ⇒ q1 =

0
0
1


and so r11 = 4. Now 〈a2,q1〉 = 0 and so r12 = 0 and

q2 =

−3/5
4/5
0


and r22 = 5. Finally, 〈a3,q1〉 = 1 and 〈a3,q2〉 = 4/5 so r13 = 1 and r23 = 4/5 thus

q̂3 =

12/25
9/25

0


so r33 = 3/5 and

q3 =

4/5
3/5
0



10 2. FOURTEENTH LECTURE

Hence

A =

0 −3/5 4/5
0 4/5 3/5
1 0 0

4 0 1
0 5 4/5
0 0 3/5


And so

Rx = A∗b =

 0 0 1
−3/5 4/5 0
4/5 3/5 0

1
0
0

 =

 0
−3/5
4/5


Then 4 0 1

0 5 4/5
0 0 3/5

x =

 0
−3/5
4/5


So x3 = 4/3, 5x2 = −3/5− 16/15 = −5/3 so x2 = −1/3. Then 4x1 = −4/3 so

x =

−1/3
−1/3
4/3



CHAPTER 3

Fifteenth Lecture

We use the QR factorization to study a problem about solve overdetermined
systems of linear equations “approximately”..

1. Least Squares Method

Recall we say that a system of linear equations is overdetermined if there are
more equations then unknowns. That is one has A ∈ Cm×n with m > n and look
at

Ax = b

for a fixed b ∈ Cm. By the rank-nullity theorem dimR(A) ≤ n < m so for “most”
b this equation has no solution.

In this case what we do is study the so called residual

r = b−Ax ∈ Cm

The idea is to try and find the x that makes the residual as small as possible.
In order to do this we need to have a notion of “size” for vectors. We will discuss

this more later but for now we take the 2-norm, that is we try and minimize:

||b−Ax||2.

That is we try and find x so that r has least length, in other words soAx is the closest
vector in R(A) to b. This turns out to be natural from both geometric point of
view and from more experience. It also has the advantage of being mathematically
and algorithmically very tractable.

So how do we find the x that minimizes the residual? It turns out that there is
a nice characterization in terms of linear algebra that we have already developed:

Theorem 1.1. Let A ∈ Cm×n (m ≥ n) and b ∈ Cm. A vector x ∈ Cn

minimizes the residual ||r||2 = ||b − Ax||2 if and only if r is orthogonal to R(A)
that is r ∈ L−Null(A) (i.e. A∗r = 0).

Proof. ⇒ By our hypothesis for any y ∈ R(A), and t ∈ R for t 6= 0 then
||b− (Ax + ty)||2 ≥ ||r||2. We can square both sides so obtain:

||b−Ax− ty||22 ≥ ||r||22
||r− ty||22 ≥ ||r||22

||r||22 − t(〈r,y〉+ 〈y, r〉+ t2||y||22 ≥ ||r||22
Here the last line follows by expanding out the inner product. Thus, after dividing
by t (since it is not 0)

−(〈r,y〉+ 〈y, r〉) + t||y||22 ≥ 0.

11

12 3. FIFTEENTH LECTURE

By letting t → 0 get

−(〈r,y〉+ 〈y, r〉) ≥ 0

Notice that by replacing y by −y be get

−(〈r,−y〉+ 〈−y, r〉) ≥ 0

〈r,y〉+ 〈y, r〉 ≥ 0

So 〈r,y〉 + 〈y, r〉 = (〈r,y〉 + 〈r,y〉 = 0 this means 〈r,y〉 is purely imaginary. By
replacing y by ±y be get

−(〈r,±Iy〉+ 〈±Iy, r〉) ≥ 0

−(±I〈r,y〉 ∓ I〈y, r〉) ≥ 0

∓I(〈r, Iy〉 − 〈Iy, r〉) ≥ 0

This implies 〈r,y〉 is purely real and hence combining with the above is 0.
⇐. We need to show that if r is orthogonal to R(A) then for any point y ∈ R(A)

one has ||b− y||2 ≥ ||r||2. To do so we note that Ax− y ∈ R(A) and b− Ax = r
is orthogonal to this so

||b− y||22 = ||b−Ax + Ax− y||22 = ||b−Ax||22 + ||Ax− y||22 ≥ ||r||22
Here we used the Pythagorean theorem. �

A useful consequence of this theorem is then: Let P ∈ Cm×m be a orthogonal
projection onto R(A). Then r = b−Ax minimizes the residual norm if and only if
x solves

Ax = Pb.

which we know has at least one solution (since Pb ∈ R(A)). Notice that x is unique
when only when N(A) = {0} i.e. if A has full rank. We will usually assume this.

One other way to think about this is as a right approximate inverse Idea is let
A ∈ Cm×n with m ≥ n and A of full rank. For each ei a standard basis vector of
Cm let bi be the unique vector in Cn so that

Abi = Pei

and set
B =

[
b1| cdots |bm

]
∈ Cn×m

Now AB = P . In other words, if we let Q be the compelementary projector to P
(so Q projects orthogonally onto R(A)⊥ = L−Null(A) then

AB = I −Q

So for instance if the left null space is zero we have an actual inverse.

2. Least Squares from QR factorization

So how do we use this in practice? We need to find the the projection onto
R(A). The key is getting an orthonormal basis. We’ve used this before (but maybe
not said it so clearly). Basically, let v1, . . . ,vk be an orthonormal basis of R(A).
Then one checks that

P =
k∑

i=1

viv∗i = V V ∗ ∈ Cm×m

3. APPLICATION:NIC 13

gives orthogonal projection onto R(A). It suffices to verify that P 2 = P , P ∗ = P
and that R(P) = R(A). I leave this as an excersize.

Thus we need to find an orthonormal basis of R(A). The QR factorization
provides a good way to do this. To make this work we need to work with full rank
A in Cm×n (m ≥ n). If we take the reduced QR factorization ie.

A = Q̂R̂

then if we set
P = Q̂Q̂∗

then P ∈ Cm×m is orthogonal projection onto R(A). (Recall the columns of Q̂ are
an orthonormal basis of R(A)). Notice if A is not full rank, then we can’t ensure
that the columns of Q̂ are not necessarily inside of R(A). This is one reason to
start with A of full rank. So we are solving

Q̂R̂x = Pb = Q̂Q̂∗b.

That is
Q̂R̂x− Pb = Q̂Q̂∗b = Q̂

(
R̂x− Q̂∗b

)
= 0.

As Q̂ has columns which are orthonormal, the columns are all linearly independent
so N(Q̂) = 0. Thus the equation we want to solve is:

R̂x = Q̂∗b.

This yields the following algorithm for solving the problem (at least for full
rank A ∈ Cm×n):

(1) Compute the (reduced) QR factorization A = Q̂R̂.
(2) Compute the vector b′ = Q̂∗b
(3) Solve the upper-triangular system R̂x = b′.

Notice that (1) is the most computationally intensive step. We can do it by either
the Gram-Schmidt algorithm already discussed or some other approachs we discuss
in the next lecture. For the last step one uses back substitution.

3. Application:NIC

Least-Squares is used in many different contexts. I’ll present one important
instance, namely fitting a polynomial to data. The basic set is to start with m
points (x1, y1), . . . , (xm, ym) in R2 (or C2). We assume xi 6= xj for i 6= j. With out
this hypthoesesis the points wouldn’t lie on any graph of any function of x. We
look for a polynomial P of degree n− 1 so that P (xi) = yi.

If we write
P (x) = c0 + c1x + . . . + cn−1x

n−1

then we are looking for c0, . . . , cn−1 so that P (xi) = yy. Finding such ci is a linear
problem (even though polynomials tend to be very non-linear). Indeed, if we write:

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
1 xm x2

m · · · xn−1
m


 c0

...
cn−1

 =

 y1

...
ym



14 3. FIFTEENTH LECTURE

We see we are really solving a system of linear equations. We shorten this to

Xc = y

Here X ∈ Cm×n is the called the Vandermonde matrix.
It turns out that the condition that xi 6= xj implies that X is full rank (Excer-

cise!). In particular, if m = n we can always find the desired P so taht P (xi) = yi.
It turns out choosing such a polynomial is less than ideal. The problem is that

the graph doesn’t interpolate the points well. That is, in between adjacent values
x1, x2 the graph might become very far from y1 and y2. A related issue is that
if the xi and yi are changed slightly, the approximating polynomial might change
radically. Since data is noisy this is not desirable. It turns out that this issue is
lessened if one uses a lower degree polynomial. That is take m < n. In this case
one has an overdetermined system of equations so one has to look at “approximate”
solutions as above.

