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CHAPTER 1

Nineteenth and Twentieth Lectures

In these two lectures we look at other notions of length of vectors then the
2-norm. We also discuss notions of length for matrices.

1. Vector Norms

We are familiar with the two norm already.

||v||2 =
√
〈v,v〉 =

√
v∗v

We interpret this as the length of the vector v. Some important properties of the
two norm are that

||v||2 ≥ 0 and ||v||2 = 0 ⇐⇒ v = 0

||λv||2 = |λ|||v||2
||v + w||2 ≤ ||v||2 + ||w||2.

It is sometimes necessary to have other notions of length besides the 2-norm.
To do this we take the three preceeding properties as a definition. We say a function
|| · || : Cm → R is a norm if

||v|| ≥ 0 and ||v|| = 0 ⇐⇒ v = 0

||λv|| = |λ|||v||
||v + w|| ≤ ||v||+ ||w||.

There are many norms. For instance: The p-norms, let x =
∑m

i=1 xiei

||x||p :=

(
m∑

i=1

|xi|p)

)1/p

(1 ≤ p < ∞)

||x||∞ : − = max
1≤i≤m

|xi|

Note that ||x||2 =
√

x∗x which agrees with the usual notion of 2 norm. It is a good
exercise to check that the ∞-norm is a actually a norm. There are lots of other
norms for instance let W ∈ Cm×m be a diagonal matrix with positive entries wii

on the diagonal We can define

||x||W = ||Wx||2 =

√√√√ m∑
1=1

|wiixi|2

Unit ball is then some sort of ellipse.
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2. Induced Matrix Norms

Associated to any pair of norms ||·||(n) on Cn and ||·||(m) on Cm (not necessarily
p-norms) there is an induced matrix norm, || · ||(m,n) on Cm×n This norm measures
the maximum amount of “stretching” (as measured by the norms on Cm and Cn)
that multiplication by A can achieve that is

||A||(m,n) = sup
x∈Cn,x6=0

||Ax||(m)

||x||(n)
= sup

x∈Cn,||x||(n)=1

||Ax||(m)

||x||(n)
.

We leave it as an excercise to see that the two definitions are equivalent. Another
way to think about this is to note that the induced norm is the smallest value C so
that

||Ax||(m) ≤ C||x||(n)

for all x ∈ Cn. In general this definition is hard to use computationally (as for-
mulated it is not an algebraic property). It is very intuitive though and has good
mathematical properties.

We will often consider the case when || · ||(n) = || · ||p and || · ||(m) = || · ||p
(i.e. both norms are p-norms). We then write ||A||p instead of ||A||(m,n). A simple
example. Suppose that m = n and A is a diagonal matrix

A =


a1

a2

...
. . .

am


Then ||A||p = max 1 ≤ i ≤ m|ai|. When p = 2 we can see this geometrically. As A
maps a circle to an ellipse. And the longest vector in the image is the biggest axis.

Another example. Lets compute the 1-norm of a matrix. This turns out to be
easy to determine in terms of the lengths of columns. We calim that with

A =
[
a1 | · · · |an

]
one has

||A||1 = max
1≤j≤n

||aj ||1

To see this we calculate for x =
∑n

j=1 xjej with ||x||1 = 1. In this case we see that∑
j=1 |xj | = 1. Then

||Ax||1 = ||
n∑

j=1

xjaj ||1 ≤
n∑

j=1

||xjaj ||1 =
n∑

j=1

|xj |||aj ||1

But then

≤
(

max
1≤j≤n

||aj ||1
) n∑

j=1

|xj | = max
1≤j≤n

||aj ||1

This implies
||A||1 ≤ max

1≤j≤n
||aj ||1

To get the equality we we suppose the maximum is achieved at the j0 column i.e.

max
1≤j≤n

||aj ||1 = ||aj0 ||1
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then with x0 = ej0 one has ||x0||1 = 1 and ||Ax0||1 = ||aj0 ||1. In a similar fashion
one can show that

||A||∞ = max
1≤i≤m

||a∗i ||1

I.e. is the maximum length of the rows. We leave this as an exercise.
Computing matrix p-norms for 1 < p < ∞ is much harder. We will see a

method to do this for 2 norms (which is the most important). One fact that can
be useful in at least getting a bound on induced norms is a generalization of the
Cauchy-Schwarz inequality called H olders Inequality:

|〈x,y〉| ≤ ||x||p||y||q
provided 1/p + 1/q = 1. When p = q = 2 this is the Cauchy-Schwarz inequality.

3. General Matrix Norms

There are many more norms on matrices then just the induced norms. In
general we say a map || · || : Cm×n → R is a matrix norm if it is just a norm on the
vector space Cmn. That is

||A|| ≤ 0 and ||A|| = 0 ⇐⇒ A = 0

||A + B|| ≤ ||A||+ ||B||
||λA|| = |λ|||A||

It is easy to see any induced norm satisfies these conditions.
One important norm that is not an induced norm is the so called Frobenius

norm. This is given by

||A||F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

=

 n∑
j=1

||aj ||22

1/2

Which is just the 2-norm on Cmn.
One other way to compute this (which is useful from a theoretical point of

view) is
||A||F =

√
tr(A∗A) =

√
tr(AA∗)

Here tr(A) =
∑min(m,n)

i=1 aii. It is a simple exercise to check this.
General matrix norms do not interact with matrix multiplication. However, for

induced norms and the Frobenius norm the norm of the product is controlled by
the product of the norms. Indeed,

||AB||(l,n) ≤ ||A||(l,m)||B||(m,n)

here A ∈ Cl×m and B ∈ Cm×n. To see this just consider

||Ax||(l) ≤ ||A||(l,m)||Bx||(m) ≤ ||A||(l,m)||B||(m,n)||x||(n)

and
||AB||F ≤ ||A||F ||B||F

Final useful property the induced 2-norm and the Frobenius norm is that they
are invariant under pre- or post-multiplication by a unitary matrix. That is let
Q ∈ Cm×m and Q′ ∈ Cn×n both be unitary. Then for A ∈ Cm×n one has

||QA||2 = ||A||2 and ||QA||F = ||A||F
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and
||AQ′||2 = ||A||2 and ||AQ′||F = ||A||F .



CHAPTER 2

Twenty-First Lecture

We introduce the singular value decomposition (SVD).

1. What is the SVD: A Geometric point of view

The SVD is a factorization of an arbitrary matrix that follows from geometric
properties of linear maps. In particular, one tries to understand what the image of
the unit sphere is under multiplication by A. To work geometrically we first focus
on the reals. To that end, let A ∈ Rm×n and consider the unit sphere in Rn i.e.
the vectors x ∈ Rn with ||x||2 = 1. We denote this set by S and the consider it is
AS. Formally, AS = {y ∈ Rm : y = Ax,x ∈ S}. We claim that AS is in general a
hyperellipse (i.e. a higher dimenisonal analog of an ellipse).

For n = m = 2 this means that S is the unit circle and AS should be a rotation
and stretching of some ellipse. Note that we are allowed to stretch so much that
AS is actually a line segment.

To be more precise we suppose that A ∈ Rm×n with m ≥ n and suppose also
that A has full rank (i.e. the columns linearly independent). We define the singular
values σ1, σ2, . . . , σn to be the length of the principal semiaxes of AS. We usually
order these so σ1 ≥ σ2 ≥ . . . ≥ σn > 0. Note that σn > 0 as N(A) = {0}.

We define the left singular vectors of A to be the set of orthogonal unit vectors
{u1, . . . ,un} in Cm so that σiui is a principal semiaxis of AS. In particular σ1u1 is
the largest semiaxis of AS. The right singular vectors are the set of orthgonal unit
vectors {v1, . . . ,vn} in Cn so that Avi = ui. As N(A) = {0} the ui are unique.
We mention that it is not a priori clear that the ui need to be orthgonal, this is
however true and is something we will show.

In terms of matrices:
AV = ÛΣ

Here
V =

[
v1| · · · |vn

]
∈ Cn×n

While
Û =

[
u1| · · · |un

]
∈ Cm×n

and

Σ =

σ1 · · ·
...

. . .
...

σn


This means one has a reduced SVD factorization:

A = ÛΣV ∗.
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As with the QR factorization we can form a full SVD by adding additionally
columns to Û to make a unitary square matrix U . This requires adding additional
zeros to Σ. This gives

A = UΣV ∗

2. What is the SVD: an Algebraic Point of View

While the geometric point of view discussed above is imporatant to understand-
ing the SVD it is hard to make rirgourous (and not easy to compute with). We will
now discuss a more algebraic point of view.

We let m,n now be arbitary integers and let A ∈ Cm×n also be arbitary. A
(full) Singular Value Decomposition of A is a factorization

A = UΣV ∗

Where U ∈ Cm×m is unitary. V ∈ Cn×n is unitary and Σ ∈ Rm×n is diagonal. We
assume in addition that the diagonal elements of Σ are non-negative and ordered
so σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0 where p = min(m,n). That is we can write (here we
have m = n):

Σ =

σ1 0 · · · 0

0
. . .

0 · · · 0 σp


Notice that it is then clear that the image of the unit sphere under A is a hyperel-
lipse.

The issue now is to see whether every matrix admits a singular value decom-
position. This turns out to always be the case:

Theorem 2.1. Every matrix A ∈ Cm×n has a singular value decomposition.
Furthermore, the singular values {σj} are uniquely determined and if A is square
and the σj are distinct the ne the left and right singular vectors {uj} and {vj} are
uniquely determined up to (complex) sign.

Proof. The method of proof is an induction on the dimension of A where
what me really mean is an induction on l = min(m,n). Set σ1 = ||A||2. Because
the unit sphere is a compact and the map x → ||Ax||2 is continuous there must be
vectors v′1 ∈ Cn and u′1 ∈ Cm with ||v′1||2 = ||u′1||2 = 1 and so that Av′1 = σ1u′1.
You should take this for granted as it is beyond the scope of this class to discuss it
further. Consider a basis extension of v′1 to

{
v′j
}

an orthonormal basis of Cn and
a basis extension of u′1 to

{
u′j
}

an orthonormal basis of Cm. Let U1 and V1 denote
the matrices with columns

{
v′j
}

and
{
u′j
}
. Then one has

U∗
1 AV1 = S =

[
σ1 w∗

0 B

]
Here B ∈ C(m−1)×(n−1) and w ∈ Cn−1. One estimates∣∣∣∣∣∣∣∣[σ1 w∗

0 B

] [
σ1

w

]∣∣∣∣∣∣∣∣
2

≥ σ2
1 + w∗w = (σ2

1 + w∗w)1/2

∣∣∣∣∣∣∣∣[σ1

w

]∣∣∣∣∣∣∣∣
2

, .

This means σ1 = ||A||2 = ||S||2 ≥ (σ2
1 + w∗w)1/2 which can only occur if w∗w =

||w||22 = 0. In particular,

U∗
1 AV1 =

[
σ1 0
0 B

]
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If n = 1 or m = 1 we are done – this is the base case l = 1. Otherwise B
describes an action on span(v1)⊥. By the induction hypothesis one has an SVD of
B

B = U2Σ2V
∗
2

One verifies that

A = U1

[
1 0
0 U2

] [
σ1 0
0 Σ2

] [
1 0
0 V2

]∗
V ∗

1

is an SVD of A. The point is that the first two matrices are unitary so their product
is also unitary, same true for last two and the middle one is diagonal. Notice that
||B||2 ≤ ||A||2 so the singular values are ordered as desired.

To verify uniqueness we note that σ1 is uniquely determined by being equal to
||A||2. Now suppose that in addition to v1 there is another (linearly independent)
vector w with ||w||2 = 1 and ||Aw||2 = σ1. Let

v2 =
Pv⊥1

w

||Pv⊥1
w||2

As ||A||2 = σ1 one has ||Av2||2 ≤ σ1. We claim this is an equality.
To see this we note that as v1 is a left singular vector and v2 is perpendicular

to v1 one has
〈Av1, Av2〉 = 0

To see this we note that A has the SVD A = UΣV ∗ where v1 is the first column
of V . Thus 〈Av1, Av2〉 = 〈A∗Av1,v2〉 = 〈σ2

1v1,v2〉 = 0. Now we can write
w = c1v1 + c2v2 and since v1 and v2 are an orthonormal set |c1|2 + |c2|2 = 1
with both non-zero. Withouth equality the Pythagorean theorem would imply
||Aw||2 < σ1 a contradiction. Thus v2 is a second right singular vector of A
corresponding to σ1. This implies that the singular values would not be distinct
and so cannot occur. The result follows by induction. �


