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CHAPTER 1

Twenty-Sixth Lectures

In the this lecture we further discuss properties of the Eigenvalues and Eigen-
vectors. In particular, we derive some consequences of the Schur factorization
discussed last lecture. (Note Lecture Twenty-Five was accidentally overwritten).

1. Applications of the Schur Factorization

Recall, last time we showed that:

Theorem 1.1. Every square matrix A ∈ Cm×m has a Schur factorization.
That is

A = QTQ∗

where Q ∈ Cm×m is unitary and T ∈ Cm×m is upper triangular.

Remark 1.2. If T is diagonal then A is diagonizable and is indeed is unitarly
diagonizable.

One nice thing about upper triangular matrices is that the entries on their
diagonal are the eigenvalues:

Theorem 1.3. Let

X =

x11 x12 · · ·
0 x22 · · ·
...

. . .


be upper triangular. Then Λ(X) = {x11, . . . , xmm}.

Proof. Expanding out the determinant one can compute the characteristic
polynomial of X to be

PX(z) = (z − x11) · · · (z − xmm).

One readily sees that the roots are then the elements on the diagonal of X. �

As a consequence, if we can find a Schur factorization of a matrix A we can
find the eigenvalues of a matrix. In order to make this precise idea of a similarity
transformation. This is just another word for changing the basis that one uses to
represent the matrix.

Definition 1.4. We say two matrices A,B ∈ Cm×m are similar if there is a
non-singular matrix X so that the matrix B = X−1AX.

As we’ve seen B is the matrix A in the basis given by the columns of X.
An important fact which follows from properties of the determinant is that if A
and B are similar matrices then PA(z) = PB(z), that is A and B have the same
characteristic polynomial. In particular, A and B have the same eigenvalues with
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4 1. TWENTY-SIXTH LECTURES

the same algebraic multiplicities. In fact, as A and B are similar there is a non-
singular X ∈ Cm×m so that B = X−1AX. Clearly, if v is an eigenvector of A
corresponding to λ ∈ Λ(A) = Λ(B), then X−1v is an eigenvector of B corresponding
to λ. In particular, the geometric multiplicity of λ with respect to A and B are the
same. As mentioned, the proof uses from properties of the determinant. We refer
to Theorem 24.3 of Trefethen and Bau.

A consequence of the Schur factorization is that any matrix A ∈ Cm×m is
similar to an upper triangular matrix T ∈ Cm×m and hence the eigenvalues of A
can be determined from the diagonal of T .

We can also use the Schur factorization to prove things:

Theorem 1.5. Let A ∈ Cm×m be hermitian. Then A has real eigenvalues, is
non-defective and there is an orthonormal set of eigenvectors of A.

Proof. Let A = QTQ∗ be a Schur factorization of A. One has A∗ = A so
QT ∗Q∗ = QTQ∗ that is T ∗ = T . Since T is upper triangular this means that
T is diagonal and all the entries on the diagonal are real. This implies that the
eigenvalues of A are all real as desired. Finally, as T is diagonal, the columns of Q
are the eigenvectors of A. �

Remark 1.6. Another way to say this is that when A is hermitan it is unitarily
diagonizable.

2. Applications of Eigenvalues

Once one knows the eigenvalues and eigenvectors of a matrix A one can tell
a number of useful facts about A right away. However, one can also tell many
useful things about iterates of A that is matrices of the form An (i..e the matrix
obtained by multiplying A by itself n-times). In particular, it is relatively painless
to compute An given such information. Indeed, suppose A is non-defective and so
is diagonizable, i.e. we can write

A = XΛX−1

for some non-singular X and diagonal Λ here

Λ =

λ1 0 · · · 0

0
. . . 0

0 · · · 0 λm


Then it is simple to see that

A2 = XΛX−1XΛX−1 = XΛ2X−1

and so by induction

An = XΛX−1XΛX−1 = XΛnX−1

Notice that knowing the SVD does not allow for such a nice formula. In practice,
the SVD gives alot of information about the matrix A, but tells one little about
iterates of A.
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Another thing we can do is take square-roots of (some) matrices. Consider first
a diagonal matix

A =


a1 0 · · · 0

0
. . . 0

...
0 · · · 0 am


We want to find a B so that B2 = A. For simplicity, we assume ai ≥ 0. Then we
can take

B =


√

a1 0 · · · 0

0
. . . 0

...
0 · · · 0

√
am


and B2 = A and so we write B =

√
A in this case. More generally, we say a

hermitian matrix A is positive semi-definite if all the eigenvalues of A are non-
negative. This is equivalent to 〈Ax,x〉 ≥ 0 for all x ∈ Cm (A still hermitian). Then
we can check that there is a hermitian matrix B with B2 = A. Indeed, as A is
hermitan it is (unitarily) diagonizable, so

A = QΛQ∗

As all the eigenvalues of A are non-negative all the entries of Λ are non-negative,
so we just set

B = Q
√

ΛQ∗





CHAPTER 2

Twenty-Seventh Lecture

We discuss here iterative methods of determining eigenvalues and eigenvectors.
As previously mentioned finding eigenvalues is not an easy procedure. This

is because finding the roots of the characteristic polynomial is a non-linear prob-
lem, and is computationally difficult. Thus, we will instead discuss some other
approaches. The methods we discuss are not the ones used in practice, but are
related and will give some insight into how one would numerically find eigenvalues.

It turns out to be the case that the discussion is vastly simplified if we restrict
attention to real symmetric matrices. I.e. A ∈ Rm×m and A∗ = A> = A. Notice,
the eigenvalues (and hence also eigenvectors) are real. To fix notation for this
lecture we let λ1, . . . , λm be the eigenvectors of A and q1, . . . ,qm the associated
eigenvalues normalize so ||qj ||2 = 1 (so they form an orthonormal basis of Rm. We
also order the eigenvalus so that |λ1| ≥ |λ2| ≥ · · · ≥ |λm|.

1. Rayleigh Quotient

One way to think about an eigenvalues is as follows: Fix a vector x ∈ Rm. We
seek the scalar α ∈ R that makes x an as close as possible to beign an eigenvector.
I.e. we want to minimize

||Ax− αx||2
Of course if x is actually an eigenvector this is minimized when α is actually the
associated eigenvalue as the value is zero.

We can re-formulate this question as follows: We are trying to solve the overde-
termined system of equations :

xα = Ax
in the one unknown α in the sense of least squares. To make this easier to parse,
let us think of x as an m× 1 matrix and write it as X. Then we are solving

X
[
α
]

= Ax

in the sense of least squares.
To do this, we need to find PX the projector onto R(X) = span(x). This is

given by

P =
xx∗

||x||22
=

xx>

||x||22
Hence we may take

αx = PAx =
x>Ax
||x||2

x =
〈Ax,x〉
||x||22

x

This value α is called the Rayleigh Quotient and denote it by r(x). So

r(x) =
〈Ax,x〉
||x||22

7



8 2. TWENTY-SEVENTH LECTURE

Notice that when x = qj is an eigenvector, r(x) = λj the associated eigenvalue.
We may think of

r : Rm → R
as a function of several variables. It is not hard to see that away from x = 0 this is
a smooth function (i.e. all partial derivatives exist and are continuous). A straight
forward computation gives

∇r(x) =
2

||x||22
(Ax− r(x)x)

(here we have taken the gradient of r). In particular, the critical values of r are
precisely the eigenvalues of A. While the critical points are the eigenvectors. To
make this clearer one usually restricts r to the sphere ||x||2 = 1.

How does this help us? Well we always know that the maximum of r and
the minimum of r on the sphere ||x||2 = 1 are critical points of r. In particular,
these give us eigenvalues. This should remind you of the SVD. This approach (i.e.
looking for the maximum and minimum) won’t help us directly as it is not very
computational. However, it does give us some useful information. Namely, notice
that when x is an eigenvector, r(x) gives the associated eigenvalue. Moreover, if
we have reason to believe that x is near to an eigenvector qj then r(x) is near λj .
Indeed, we Taylor’s theorem gives that the following estimate holds:

(1.1) r(x)− r(qj) = O(||x− qj ||22),x → qj

Here we used that ∇r vanishes at x = qj . Notice that for ε > 0 small that ε2 is
much smaller. In other words, if x is close to qj then r(x) is very close to λj .

2. Power Iteration

We introduce now a method called power iteration that finds the largest eigen-
value and eigenvector of matrices A under certain conditions on A. The basic idea
is that repeated multplication by A tends to amplify the eigenvector correspond-
ing to the largest eigenvalue more than the other eigenvectors. That is if we start
with an appropriate v then consider v(k) = Akv, if one expresses v in the basis of
eigenvectors {q1, . . . ,qm} the coefficient in front of q1 should be much larger than
all the other coefficients.

More precisely, start with a (randomly choosen) vector v(0) with ||v(0)||2 = 1.
And consider the iterative construction:

v(k+1) =
Av(k)

||Av(k)||2
, λ(k+1) = r(v(k+1))

Then in good circumstances one has that v(k) → q1 and λ(k) → λ1.

Theorem 2.1. Suppose that |λ1| > |λ2| ≥ . . . |λm| ≥ 0 and 〈q1,v(0)〉 6= 0 then
the iterates above satisfy

||v(k) − (±q1)||2 = O(
∣∣∣∣λ2

λ1

∣∣∣∣k), |λ(k) − λ1| = O(
∣∣∣∣λ2

λ1

∣∣∣∣2k

)

Remark 2.2. The signs in front of the q1 are an unfortunate technical annoy-
ance. If λ1 > 0 they may always be taken to be positive, while if λ1 < 0 they
alternate in k.
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Proof. We note that as the qi form an orthonormal basis we can write v(0)

as

v(0) = a1q1 + a2q2 + · · ·+ amqm.

Notice that a1 = 〈v(0),q1〉 6= 0. Then (here ck is a normalizing term):

v(k) = ckAkv(0)

= ck(a1λ
k
1q1 + . . . + amλk

mqm)

= ckλk
1

(
a1q1 + a2(λ2/λ1)kq2 + . . . + am(λm/λ1)kqm

)
Tthe first estimate follows from this by noting that for j > 1,

(
λj

λ1

)k

→ 0 as k →∞
at the desired rate. The second follows from this and the quadratic estimate (1.1).
When λ1 > 0 the signs are all positive if λ1 < 0 they alternate. �

Notice that as long as the largest (in magnituded) two eigenvalues have distinct
magnitudes (not something one know a priori–a serious drawback) then the power
iterates converge to the largest eigenvalue at a rate determined by the ratio between
the two eigenvalues. This illustrates some of the drawbacks of this method.

Again the main idea of the method is that successive multiplications by A tends
to amplify the part of v(0) that corresponds the eigenvector q1 (i.e. the eigenvector
associated to λ1) much more than an other part of v(0). In particular, after many
iterations “most” of Akv(0) is in the direction of q1.

3. Inverse Iteration:NIC

As we saw above there are two major drawbacks to power iteration. First it
only finds the largest eigenvalue. Second if there is not a large amount of separation
between the largest two eigenvalues the convergence is slow. A way to overcome
the first issue is to consider the matrix

A− µI

for some µ ∈ R to be specified. The important point is that Λ(A−µI) = Λ(A)−µ.
I.e. the eigenvalues are λi − µ. If µ is not an eigenvalue, then it is straightforward
to see that A− µI is invertible and the eigenvalues of

(A− µI)−1

are (λi − µ)−1. That is if µ is near to the eigenvalue λi0 then (A − µI)−1 has a
very large eigenvalue given by (λi0 −µ)−1. If we then use this with power iteration
it converges to λi0 and the associated eigenvector qi0 . That is we can find all the
eigenvalues, at least as long as we start near enougth.

This procedure is known as inverse iteration. The basic idea is the start with
a vector v(0) with ||v(0)||2 = 1. Now iteratively do the following procedure:

(1) Solve for (A− µI)w = v(k).
(2) Set v(k+1) = w

||w||2
(3) Set λ(k+1) = r(v(k+1)).

In ideal situations one then gets convergence to an eigenvalue.
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Theorem 3.1. Suppose that λi0 is the closes eigenvalue of A to µ and λi1 is
the second closest and that |µ − λi0 | < |µ − λi1 | ≤ |µ − λj | for j 6= i0. Further
suppose that 〈v(0),qi0〉 6= 0. Then the iterates of inverse iteration satisfy

||v(k) − (±qi0)||2 = O

(∣∣∣∣µ− λi0

µ− λi1

∣∣∣∣k
)

, |λ(k) − λi0 | = O

(∣∣∣∣µ− λi0

µ− λi1

∣∣∣∣2k
)

as k →∞.

Notice this is essentially the same rate of growth as before, but it does allow one
to find different eigenvalues. There is still an issue when one has nearby eigenvalues.

One way to think of the inverse iteration is that it is a way to transform an
eigenvalue estimate to an eigenvector estimate. I.e. if we you have a pretty good
idea of what one of the eigenvalues is, application of inverse iteration gives you
a much better idea, as well as giving an associated eigenvector. This contrasts
with (1.1) where having a vector x that is near to an eigenvector means that r(x)
is quite close to an eigenvalue. By a clever combination of inverse iteration with
the Rayleigh quotient one obtains a algorithm that converges quite rapidly to an
eigenvalue, provided one starts near enough.


