1. (20 points) Consider the following matrices that depend on a parameter \(\lambda \in \mathbb{C} \):

\[
A_\lambda = \begin{bmatrix}
1 & 0 \\
2 & 0 \\
\lambda & -1
\end{bmatrix}
\]

(a) For each \(\lambda \), determine \(||A_\lambda||_F \) the Frobenius norm of \(A_\lambda \).

(Note: technically \(\lambda \in \mathbb{C} \) which complicates things). The Frobenius norm of \(A_\lambda \) is the square-root of the sum of the squares (of the modulus) of the entries of \(A_\lambda \).

\[
||A_\lambda||_F = \sqrt{1^2 + 2^2 + (-1)^2 + |\lambda|^2} = \sqrt{6 + |\lambda|^2}
\]

(b) For each \(\lambda \), determine \(||A_\lambda||_2 \) the induced 2-norm of \(A_\lambda \).

In order to compute the two norm of \(A_\lambda \) we compute the largest singular value \(\sigma_1 \) of \(A \). This is because, by definition, \(||A_\lambda||_2 = \sigma_1 \). We have established in class that the singular values are the square roots of the eigenvalues of the matrix

\[
B_\lambda = A_\lambda^* A_\lambda = \begin{bmatrix}
5 + |\lambda|^2 & -\lambda \\
-\lambda & 1
\end{bmatrix}
\]

The characteristic polynomial of this matrix is \(p_B(z) = det(B - zI) = z^2 - (6 + |\lambda|^2)z + 5 \) so by the quadratic formula the eigenvalues are

\[
\alpha_\pm = \frac{6 + |\lambda|^2 \pm \sqrt{|\lambda|^4 + 12|\lambda|^2 + 16}}{2}
\]

Hence, the largest singular value of \(A \) is

\[
\sigma_1 = \sqrt{\frac{6 + |\lambda|^2 + \sqrt{|\lambda|^4 + 12|\lambda|^2 + 16}}{2}}
\]
2. (20 points) Let $A \in \mathbb{C}^{m \times m}$ be hermitian (i.e. $A = A^\ast$). Let $P \in \mathbb{C}^{m \times m}$ be the matrix representing orthogonal projection onto $N(A)$. Please show that $X = A + P$ is invertible. (Hint: Think about the four fundamental subspaces of A).

In order to show that X is invertible is suffices to show that $N(X) = \{0\}$. To that end we note that $R(P) = N(A)$ by definition of P and that $R(A) = R(A^\ast)$ as A is hermitian. Now suppose that $x \in N(X)$ so $Xx = 0$ then $(A + P)x = 0$ so that $y = Ax = -Px$. In other words, $y \in R(A)$ and $y \in R(P)$ and so $y \in N(A) \cap R(A^\ast)$. As $N(A)$ and $R(A^\ast)$ are complementary spaces this means that $y = 0$. Hence, $x \in N(A)$ and so $x \in R(P)$. But then $x = Px = y = 0$.

3. (20 points) Let \(A \in \mathbb{R}^{4 \times 2} \) be the matrix

\[
A = \begin{bmatrix}
1 & -7 \\
1 & 1 \\
3 & -7 \\
5 & -9
\end{bmatrix}
\]

(a) Find a reduced QR factorization of \(A \) i.e. \(A = \hat{Q}\hat{R} \).

To begin the QR factorization algorithm we normalize the first column of \(A \) this yields

\[
q_1 = \frac{1}{6} \begin{bmatrix}
1 \\
1 \\
3 \\
5
\end{bmatrix}
\]

and \(r_{11} = 6 \) the length of the first column. We next compute the inner product between \(q_1 \) and the second column to obtain \(r_{12} = -12 \) then subtracting \(r_{12}q_1 \) from the second column yields

\[
\hat{q}_2 = \begin{bmatrix}
-5 \\
3 \\
-1 \\
1
\end{bmatrix}
\]

This has length 6 so that \(r_{22} = 6 \) and

\[
q_2 = \frac{1}{6} \begin{bmatrix}
-5 \\
3 \\
-1 \\
+1
\end{bmatrix}
\]

Hence

\[
\hat{Q} = \frac{1}{6} \begin{bmatrix}
1 & -5 \\
1 & 3 \\
3 & -1 \\
5 & 1
\end{bmatrix}
\]

and

\[
\hat{R} = \begin{bmatrix}
6 & -12 \\
0 & 6
\end{bmatrix}
\]

and the reduced QR factorization of \(A \) is \(A = \hat{Q}\hat{R} \).
(b) Solve the following overdetermined system in the sense of least squares:

\[Ax = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \]

By the QR factorization we know that orthogonal projection onto \(R(A) \) is given by \(\hat{Q}\hat{Q}^* \). In particular, since \(A = \hat{Q}\hat{R} \) to solve \(Ax = b \) in the sense of least squares, we solve

\[\hat{Q}\hat{R}x = \hat{Q}\hat{Q}^*b \]

that is to solve

\[\hat{R}x = \hat{Q}^*b. \]

In our situation, the RHS is

\[\begin{bmatrix} 2/3 \\ -1 \end{bmatrix} \]

and solving by back substitution gives

\[x = \begin{bmatrix} -2/9 \\ -1/6 \end{bmatrix} \]
4. (30 points) Let \(A \in \mathbb{C}^{m \times m} \) be a square matrix. Order the singular values \(\sigma_i \) of \(A \) by \(\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_m \geq 0 \) and order the eigenvalues \(\lambda_i \) of \(A \) so \(|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_m| \geq 0 \).

(a) Show that \(\sigma_1 \geq |\lambda_1| \).

Let \(x \in \mathbb{C}^m \) be the eigenvector associated to \(\lambda_1 \) so that \(Ax = \lambda_1 x \). We may normalize \(x \) so that \(||x||_2 = 1 \). We then have

\[
||Ax||_2 = ||\lambda_1 x||_2 = |\lambda_1||x||_2 = |\lambda_1|
\]

As a consequence,

\[
|\lambda_1| \leq \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} = ||A||_2 = \sigma_1
\]

(b) Show that \(\sigma_m \leq |\lambda_m| \) (Hint: Write \(x_m \), an eigenvector associated to \(\lambda_m \), in terms of the right singular vectors \(v_1, \ldots, v_m \) of \(A \)).

Let \(A = U\Sigma V^* \) be a SVD of \(A \). We let \(v_1, \ldots, v_m \) be the columns of \(V \), i.e. the right singular vectors. Now suppose that \(x_m \) is a (non-zero) vector so that \(Ax_m = \lambda_m x_m \). We may normalize so that \(||x_m||_2 = 1 \). Writing \(x_m \) in terms of the ONB given by the \(v_i \) one has

\[
x_m = \sum_{i=1}^m c_i v_i
\]

Note that since \(||x_m||_2 = 1 \) one has \(\sum_{i=1}^m |c_i|^2 = 1 \) by the Pythagorean theorem. As a consequence \(Ax_m = \sum_{i=1}^m \sigma_i c_i u_i \). Hence by the Pythagorean theorem

\[
|\lambda_m|^2 = ||Ax_m||_2^2 = \sum_{i=1}^m \sigma_i^2 |c_i|^2
\]

Since \(\sigma_i \geq \sigma_1 \) one obtains

\[
|\lambda_m|^2 \geq \sum_{i=1}^m \sigma_i^2 |c_i|^2 = \sigma_1^2.
\]
(c) Using part a), show that if $\|A\|_2 < 1$ then $I + A$ is nonsingular. Here $\|A\|_2$ is the induced 2-norm and

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

is the 3×3 identity matrix.

(Note that I should really be the $m \times m$ identity otherwise the problem makes no sense.) Since $\|A\|_2 < 1$ we have that $\sigma_1 < 1$ and so by part a) we have that $|\lambda_1| < 1$. In particular, if $\lambda \in \Lambda(A)$ then $|\lambda| < 1$. Since $\lambda \in \Lambda(I + A)$ if and only if $\lambda - 1 \in \Lambda(A)$ and $1 > |\lambda - 1| \geq 1 - |\lambda|$ we see that $|\lambda| > 0$. In other words no eigenvalue of $I + A$ is zero. As a consequence $N(I + A) = \{0\}$ and so $I + A$ is invertible.
5. (20 points) Let \(A \in \mathbb{C}^{3 \times 3} \) be the matrix
\[
A = \begin{bmatrix}
-1 & 3 & -2 \\
0 & 3 & 1 \\
0 & 4 & 1
\end{bmatrix}
\]

Find a unitary matrix \(Q \in \mathbb{C}^{3 \times 3} \) so that
\[
QA = \begin{bmatrix}
1 & * & * \\
0 & * & * \\
0 & 0 & *
\end{bmatrix}
\]

Here * represents an unspecified number.

Notice that the first column of \(A \) is \(-e_1\) and of \(QA \) is \(e_1\). Hence, we must have \(Q(-e_1) = e_1\). That is the first column of \(e_1 \) is \(-e_1\). For \(Q \) to be unitary it must have orthonormal columns and hence \(Q \) has the form
\[
Q = \begin{bmatrix}
-1 & 0 \\
0 & Q'
\end{bmatrix}
\]
where \(Q' \in \mathbb{C}^{2 \times 2} \) is unitary. In addition, we want to have
\[
Q'
\begin{bmatrix}
3 \\
4
\end{bmatrix} = \begin{bmatrix}
x \\
0
\end{bmatrix}
\]

Now for \(Q' \) to be unitary it must preserve length. In particular, one must have \(|x| = \sqrt{3^2 + 4^2} = 5 \). We take \(x = 5 \).

We now have a number of choices we could make in finding \(Q' \). In the spirit of the Householder algorithm we take \(Q' \) to be a reflection. In this case we set
\[
v = \begin{bmatrix}
3 \\
4
\end{bmatrix} - \begin{bmatrix}
5 \\
0
\end{bmatrix} = \begin{bmatrix}
-2 \\
4
\end{bmatrix}
\]
be the vector normal to the line midway between \([3, 4]^{\top}\) and \([5, 0]^{\top}\). The orthonormal projection onto \(\text{span}(v) \) is given by
\[
P = \frac{vv^*}{||v||_2^2} = \frac{1}{5} \begin{bmatrix}
1 & -2 \\
-2 & 4
\end{bmatrix}
\]

Then we have (as we saw in class or can easily convince ourselves) that \(Q' \) is given by
\[
Q' = I - 2P = \frac{1}{5} \begin{bmatrix}
3 & 4 \\
4 & -3
\end{bmatrix}
\]

Which we verify has the desired properties. Hence
\[
Q = \frac{1}{5} \begin{bmatrix}
-5 & 0 & 0 \\
0 & 3 & 4 \\
0 & 4 & -3
\end{bmatrix}
\]
6. (30 points) (a) Let $T \in \mathbb{C}^{m \times m}$ be upper triangular. Show that if T is unitary then T is diagonal. (Hint: Use the fact that columns are orthogonal and induct on m).

We prove the result by induction on m. When $m = 1$ then any matrix is diagonal so we are done. Assume the result is true for all $m \times m$ upper-triangular matrices. We wish to prove it true for $(m + 1) \times (m + 1)$ upper-triangular matrices.

To that end we note that if $T \in \mathbb{C}^{(m+1) \times (m+1)}$ is upper triangular and unitary. Then the first column of T must be of the form μe_1 (as T upper triangular) and the length of the first column is 1 (as T unitary) so $|\mu| = 1$. Since every other column of T is orthogonal to the first column (as T is unitary) T has the form

$$T = \begin{bmatrix} \mu & 0 \\ 0 & T' \end{bmatrix}.$$

Where $T' \in \mathbb{C}^{m \times m}$ is upper triangular and unitary. In particular, by the induction hypothesis T' is diagonal and hence so is T.

(b) Let

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{mm} \end{bmatrix} \in \mathbb{C}^{m \times m}$$

be a diagonal matrix. Show that if A is unitary then $|a_{ii}| = 1$ for $1 \leq i \leq m$.

Since the columns of a unitary matrix must be of unit length it is straightforward to see that $|a_{ii}| = 1$.

(c) Let \(X \in \mathbb{C}^{m \times m} \) be unitary, use parts a), b) and the Schur factorization to show that \(X \) is unitarily diagonalizable (i.e. \(\mathbb{C}^m \) has an orthonormal basis of eigenvectors) and that \(\lambda \in \Lambda(X) \) implies \(|\lambda| = 1 \).

Write the Schur factorization of \(X \) as

\[
X = QTQ^*
\]

where \(Q \in \mathbb{C}^{m \times m} \) is unitary and \(T \in \mathbb{C}^{m \times m} \) is diagonal. For \(X \) to be unitary one has \(X^* = X^{-1} \). On the one hand

\[
X^* = (QTQ^*)^* = (Q^*)^*T^*Q^* = QT^*Q.
\]

on the other

\[
X^{-1} = (QTQ^*)^{-1} = (Q^*)^{-1}T^{-1}Q^{-1} = QT^{-1}Q^*.
\]

Hence \(T \) is unitary and so by a) and b) is diagonal with entries on the diagonal all of length 1. In all cases the diagonal entries of \(T \) are the eigenvalues of \(X \) and in this case the columns of \(Q \) are the eigenvectors of \(X \) and so we have proved the claim.
7. (30 points) Let $A \in \mathbb{R}^{3 \times 3}$ be the matrix

$$A = \begin{bmatrix} -3 & 2 & -2 \\ 0 & 1 & 0 \\ 2 & -1 & 2 \end{bmatrix}$$

(a) Find the eigenvalues of A and give their algebraic multiplicity.

By expanding along the middle column we see that the characteristic polynomial of A is:

$$p_A(z) = \det(zI - A) = (z - 1)((z + 3)(z - 2) - 2(-2)) = (z - 1)(z^2 + z - 6 + 4).$$

By inspection (or using the quadratic formula) this can be factored as

$$p_A(z) = (z - 1)(z - 1)(z + 2).$$

Thus, the eigenvalues are $\lambda = -2$ with algebraic multiplicity 1 and $\lambda = 1$ with algebraic multiplicity 2.

(b) Verify that A is diagonalizable and find a basis of eigenvectors.

As

$$A - (-2)I = \begin{bmatrix} -1 & 2 & -2 \\ 0 & 3 & 0 \\ 2 & -1 & 4 \end{bmatrix}$$

we can do Gaussian elimination to see that an eigenvector associated to $\lambda = -2$ is

$$x_1 = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

Similarly, as

$$A - I = \begin{bmatrix} -4 & 2 & -2 \\ 0 & 0 & 0 \\ 2 & -1 & 1 \end{bmatrix}$$

Gaussian elimination shows that one has (linearly independent) eigenvectors

$$x_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}, \quad x_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

one verifies that x_1, x_2, x_3 form a linearly independent set and since $\dim \mathbb{C}^3 = 3$ they must form a basis.
(c) Determine the matrices X and Λ so that X is non-singular and Λ is diagonal and so one has a factorization:

$$A = X\Lambda X^{-1}$$

If we let

$$X = \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

Using Gaussian elimination one computes

$$X^{-1} = \frac{1}{3} \begin{bmatrix} -1 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 1 & -1 \end{bmatrix}.$$

Hence using the fact that the columns of X are eigenvectors of A one has

$$A = \frac{1}{3} \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix} \begin{bmatrix} -1 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 1 & -1 \end{bmatrix}.$$

(d) Compute $A^n e_1$ for $n \geq 1$ an integer. Please simplify your answer as much as possible. Here

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

As $A = X\Lambda X^{-1}$ one computes that

$$A^n = X\Lambda^n X^{-1}.$$

That is

$$A^n = \frac{1}{3} \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (-2)^n \end{bmatrix} \begin{bmatrix} -1 & 2 & -2 \\ 2 & -1 & 4 \\ -2 & 1 & -1 \end{bmatrix}.$$

Hence,

$$A^n e_1 = \frac{1}{3} \begin{bmatrix} 1 & 0 & -2 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ (-2)^{n+1} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} -1 + (-2)^{n+2} \\ 0 \\ 2 + (-2)^{n+1} \end{bmatrix}.$$
8. (30 points) Let \(A \in \mathbb{R}^{2 \times 2} \) be the following matrix
\[
A = \begin{bmatrix} 3 & 2 \\ 1 & -2 \end{bmatrix}
\]
Let \(S_p = \{ x \in \mathbb{R}^2 : \|x\|_p = 1 \} \). Let \(AS_p = \{ Ax \in \mathbb{R}^2 : x \in S_p \} \). Here \(1 \leq p \leq \infty \) and \(\| \cdot \|_p \) is the \(p \)-norm on \(\mathbb{R}^2 \).

(a) Compute \(\mu_1 = \|A\|_1 \) the induced 1-norm of \(A \) and \(\mu_\infty = \|A\|_\infty \) the induced \(\infty \)-norm of \(A \). Remember to justify your computation.

For a vector \(x \in S_1 \) let us write \(x = \alpha e_1 + (1 - \alpha) e_2 \) where we assume \(0 \leq \alpha \leq 1 \) (so we assume \(x \) in first quadrant, by symmetry this is enough). Then \(Ax = (2 + \alpha)e_1 + (-2 + 3\alpha)e_2 \) then \(\|Ax\|_1 = |2 + \alpha| + |-2 - 3\alpha| \). When \(\alpha > 2/3 \) this is equal to \(2 + \alpha - 2 + 3\alpha = 4\alpha \), while for \(\alpha \leq 2/3 \) this is equal to \(2 + \alpha + 2 - 3\alpha = 4 - 2\alpha \). Notice that this is maximized for \(\alpha = 0 \) or \(\alpha = 1 \) and has maximum value \(\mu_1 = 4 \).

For a vector \(y \in S_\infty \) let us write \(y = xe_1 + ye_2 \) where \(x = 1 \) and \(0 \leq y \leq 1 \) and \(0 \leq x < 1 \) (so again we are in the first quadrant). Then \(Ay = (3x + 2y)e_1 + (x - 2y)e_2 \). Then \(\|Ay\|_\infty = \max \{|3x + 2y|, |x - 2y|\} \). By inspection one sees that the maximum value is \(\mu_\infty = 5 \).

(b) Determine all vectors \(x_1 \in S_1 \) and \(x_\infty \in S_\infty \) so that \(\|Ax_1\|_1 = \mu_1 \) and \(\|Ax_\infty\|_\infty = \mu_\infty \).

In the previous problem we see that \(x_1 \) can be any of the following and no other vectors:
\[
\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix}
\]

In the previous problem we see that \(x_\infty \) can be any of the following and no other vectors:
\[
\begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \end{bmatrix}
\]
(c) Sketch S_1 and $A S_1$ and indicate the vectors x_1 and Ax_1 on your picture.

(d) Sketch S_∞ and $A S_\infty$ and indicate the vectors x_∞ and Ax_∞ on your picture.