Solutions to Math 104 Final Exam - Dec. 10, 2010

1. (20 points) Consider the following matrices that depend on a parameter $\lambda \in \mathbb{C}$:

$$
A_{\lambda}=\left[\begin{array}{cc}
1 & 0 \\
2 & 0 \\
\lambda & -1
\end{array}\right]
$$

(a) For each λ, determine $\left\|A_{\lambda}\right\|_{F}$ the Frobenius norm of A_{λ}.
(Note: technically $\lambda \in \mathbb{C}$ which complicates things). The Frobenius norm of A_{λ} is the squareroot of the sum of the squares (of the modulus) of the entries of A_{F}.

$$
\|A\|_{F}=\sqrt{1^{2}+2^{2}+(-1)^{2}+|\lambda|^{2}}=\sqrt{6+|\lambda|^{2}}
$$

(b) For each λ, determine $\left\|A_{\lambda}\right\|_{2}$ the induced 2-norm of A_{λ}.

In order to compute the two norm of A_{λ} we compute the largest singular value σ_{1} of A. This is because, by definition, $\left\|A_{\lambda}\right\|_{2}=\sigma_{1}$. We have established in class that the singular values are the square roots of the eigenvalues of the matrix

$$
B_{\lambda}=A_{\lambda}^{*} A_{\lambda}=\left[\begin{array}{cc}
5+|\lambda|^{2} & -\bar{\lambda} \\
-\lambda & 1
\end{array}\right]
$$

The characteristic polynomial of this matrix is $p_{B}(z)=\operatorname{det}(B-z I)=z^{2}-\left(6+|\lambda|^{2}\right) z+5$ so by the quadratic formula the eigenvalues are

$$
\alpha_{ \pm}=\frac{6+|\lambda|^{2} \pm \sqrt{|\lambda|^{4}+12|\lambda|^{2}+16}}{2}
$$

Hence, the largest singular value of A is

$$
\sigma_{1}=\sqrt{\frac{6+|\lambda|^{2}+\sqrt{|\lambda|^{4}+12|\lambda|^{2}+16}}{2}}
$$

2. (20 points) Let $A \in \mathbb{C}^{m \times m}$ be hermitian (i.e. $A=A^{*}$). Let $P \in \mathbb{C}^{m \times m}$ be the matrix representing orthogonal projection onto $N(A)$. Please show that $X=A+P$ is invertible. (Hint: Think about the four fundamental subspaces of A).

In order to show that X is invertible is suffices to show that $N(X)=\{0\}$. To that end we note that $R(P)=N(A)$ by definition of P and that $R(A)=R\left(A^{*}\right)$ as A is hermitian. Now suppose that $\mathbf{x} \in N(X)$ so $X \mathbf{x}=0$ then $(A+P) \mathbf{x}=0$ so that $\mathbf{y}=A \mathbf{x}=-P \mathbf{x}$. In other words, $\mathbf{y} \in R(A)$ and $\mathbf{y} \in R(P)$ and so $\mathbf{y} \in N(A) \cap R\left(A^{*}\right)$. As $N(A)$ and $R\left(A^{*}\right)$ are complementary spaces this means that $\mathbf{y}=0$. Hence, $\mathbf{x} \in N(A)$ and so $\mathbf{x} \in R(P)$. But then $\mathbf{x}=P \mathbf{x}=\mathbf{y}=0$.
3. (20 points) Let $A \in \mathbb{R}^{4 \times 2}$ be the matrix

$$
A=\left[\begin{array}{cc}
1 & -7 \\
1 & 1 \\
3 & -7 \\
5 & -9
\end{array}\right]
$$

(a) Find a reduced $Q R$ factorization of A i.e. $A=\hat{Q} \hat{R}$.

To begin the $Q R$ factorization algorithm we normalize the first column of A this yields

$$
\mathbf{q}_{1}=\frac{1}{6}\left[\begin{array}{l}
1 \\
1 \\
3 \\
5
\end{array}\right]
$$

and $r_{11}=6$ the length of the first column. We next compute the inner product between \mathbf{q}_{1} and the second column to obtain $r_{12}=-12$ then subracting $r_{12} \mathbf{q}_{1}$ from the second column yields

$$
\hat{\mathbf{q}}_{2}=\left[\begin{array}{c}
-5 \\
3 \\
-1 \\
1
\end{array}\right]
$$

This has length 6 so that $r_{22}=6$ and

$$
\mathbf{q}_{2}=\frac{1}{6}\left[\begin{array}{c}
-5 \\
3 \\
-1 \\
+1
\end{array}\right]
$$

Hence

$$
\hat{Q}=\frac{1}{6}\left[\begin{array}{cc}
1 & -5 \\
1 & 3 \\
3 & -1 \\
5 & 1
\end{array}\right]
$$

and

$$
\hat{R}=\left[\begin{array}{cc}
6 & -12 \\
0 & 6
\end{array}\right]
$$

and the reduced $Q R$ factorization of A is $A=\hat{Q} \hat{R}$.
(b) Solve the following overdetermined system in the sense of least squares:

$$
A \mathbf{x}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]
$$

By the $Q R$ factorization we know that orthogonal projection onto $R(A)$ is given by $\hat{Q} \hat{Q}^{*}$. In particular, since $A=\hat{Q} \hat{R}$ to solve $A \mathbf{x}=\mathbf{b}$ in the sense of least squares, we solve

$$
\hat{Q} \hat{R} \mathbf{x}=\hat{Q} \hat{Q}^{*} \mathbf{b}
$$

that is to solve

$$
\hat{R} \mathbf{x}=\hat{Q}^{*} \mathbf{b}
$$

In our situation, the RHS is

$$
\left[\begin{array}{c}
2 / 3 \\
-1
\end{array}\right]
$$

and solving by back substitution gives

$$
\mathbf{x}=\left[\begin{array}{l}
-2 / 9 \\
-1 / 6
\end{array}\right]
$$

4. (30 points) Let $A \in \mathbb{C}^{m \times m}$ be a square matrix. Order the singular values σ_{i} of A by $\sigma_{1} \geq \sigma_{2} \geq \ldots \geq$ $\sigma_{m} \geq 0$ and order the eigenvalues λ_{i} of A so $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \ldots \geq\left|\lambda_{m}\right| \geq 0$.
(a) Show that $\sigma_{1} \geq\left|\lambda_{1}\right|$.

Let $\mathbf{x} \in \mathbb{C}^{m}$ be the eigenvector associated to λ_{1} so that $A \mathbf{x}=\lambda_{1} \mathbf{x}$. We may normalize \mathbf{x} so that $\|\mathbf{x}\|_{2}=1$. We then have

$$
\|A \mathbf{x}\|_{2}=\left\|\lambda_{1} \mathbf{x}\right\|_{2}=\left|\lambda_{1}\right|\|\mathbf{x}\|_{2}=\left|\lambda_{1}\right|
$$

As a consequence,

$$
\left|\lambda_{1}\right| \leq \sup _{\mathbf{x} \neq 0} \frac{\|A \mathbf{x}\|_{2}}{\|\mathbf{x}\|_{2}}=\|A\|_{2}=\sigma_{1}
$$

(b) Show that $\sigma_{m} \leq\left|\lambda_{m}\right|$ (Hint: Write \mathbf{x}_{m}, an eigenvector associated to λ_{m}, in terms of the right singular vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ of A).

Let $A=U \Sigma V^{*}$ be a SVD of A. We let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ be the columns of V, i.e. the right singular vectors. Now suppose that \mathbf{x}_{m} is a (non-zero) vector so that $A \mathbf{x}_{m}=\lambda_{m} \mathbf{x}_{m}$. We may normalize so that $\left\|\mathbf{x}_{m}\right\|_{2}=1$. Writing \mathbf{x}_{m} in terms of the ONB given by the \mathbf{v}_{i} one has

$$
\mathbf{x}_{m}=\sum_{i=1}^{m} c_{i} \mathbf{v}_{i}
$$

Note that since $\left\|\mathbf{x}_{m}\right\|_{2}=1$ one has $\sum_{i=1}^{m}\left|c_{i}\right|^{2}=1$ by the Pythagorean thereom. As a consequence $A \mathbf{x}_{m}=\sum_{i=1}^{m} \sigma_{i} c_{i} \mathbf{u}_{i}$. Hence by the Pythagorean theroem

$$
\left|\lambda_{m}\right|^{2}=\left\|A \mathbf{x}_{m}\right\|_{2}^{2}=\sum_{i=1}^{m} \sigma_{i}^{2}\left|c_{i}\right|^{2}
$$

Since $\sigma_{i} \geq \sigma_{1}$ one obtains

$$
\left|\lambda_{m}\right|^{2} \geq \sum_{i=1}^{m} \sigma_{1}^{2}\left|c_{i}\right|^{2}=\sigma_{1}^{2} .
$$

(c) Using part a), show that if $\|A\|_{2}<1$ then $I+A$ is nonsingular. Here $\|A\|_{2}$ is the induced 2-norm and

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

is the 3×3 identity matrix.
(Note that I should really bethe $m \times m$ identity otherwise the problem makes no sense.) Since $\|A\|_{2}<1$ we have that $\sigma_{1}<1$ and so by part a) we have that $\left|\lambda_{1}\right|<1$. In particular, if $\lambda \in \Lambda(A)$ then $|\lambda|<1$. Since $\lambda \in \Lambda(I+A)$ if and only if $\lambda-1 \in \Lambda(A)$ and $1>|\lambda-1| \geq 1-|\lambda|$ we see that $|\lambda|>0$. In other words no eigenvalue of $I+A$ is zero. As a consequence $N(I+A)=\{0\}$ and so $I+A$ is invertible.
5. (20 points) Let $A \in \mathbb{C}^{3 \times 3}$ be the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 3 & -2 \\
0 & 3 & 1 \\
0 & 4 & 1
\end{array}\right]
$$

Find a unitary matrix $Q \in \mathbb{C}^{3 \times 3}$ so that

$$
Q A=\left[\begin{array}{ccc}
1 & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right]
$$

Here * represents an unspecified number.

Notice that the first column of A is $-\mathbf{e}_{1}$ and of $Q A$ is \mathbf{e}_{1}. Hence, we must have $Q\left(-\mathbf{e}_{1}\right)=\mathbf{e}_{1}$. That is the first column of \mathbf{e}_{1} is $-\mathbf{e}_{1}$. For Q to be unitary it must have orthonormal columns and hence Q has the form

$$
Q=\left[\begin{array}{cc}
-1 & 0 \\
0 & Q^{\prime}
\end{array}\right]
$$

where $Q^{\prime} \in \mathbb{C}^{2 \times 2}$ is untary. In addition, we want to have

$$
Q^{\prime}\left[\begin{array}{l}
3 \\
4
\end{array}\right]=\left[\begin{array}{l}
x \\
0
\end{array}\right]
$$

Now for Q^{\prime} to be unitary it must preserve length. In particular, one must have $|x|=\sqrt{3^{2}+4^{2}}=5$. We take $x=5$.
We now have a number of choices we could make in finding Q^{\prime}. In the spirit of the Householder algorithm we take Q^{\prime} to be a reflection. In this, case we set

$$
\mathbf{v}=\left[\begin{array}{l}
3 \\
4
\end{array}\right]-\left[\begin{array}{l}
5 \\
0
\end{array}\right]=\left[\begin{array}{c}
-2 \\
4
\end{array}\right]
$$

be the vector normal to the line midway between $[3,4]^{\top}$ and $[5,0]^{\top}$. The orthononal projecteion onto $\operatorname{span}(\mathbf{v})$ is given by

$$
P=\frac{v v^{*}}{\|v\|_{2}^{2}}=\frac{1}{5}\left[\begin{array}{cc}
1 & -2 \\
-2 & 4
\end{array}\right]
$$

Then we have (as we saw in class or can easily convince ourselves) that Q^{\prime} is given by

$$
Q^{\prime}=I-2 P=\frac{1}{5}\left[\begin{array}{cc}
3 & 4 \\
4 & -3
\end{array}\right]
$$

Which we verify has the desired properties. Hence

$$
Q=\frac{1}{5}\left[\begin{array}{ccc}
-5 & 0 & 0 \\
0 & 3 & 4 \\
0 & 4 & -3
\end{array}\right]
$$

6. (30 points) (a) Let $T \in \mathbb{C}^{m \times m}$ be upper triangular. Show that if T is unitary then T is diagonal.
(Hint: Use the fact that columns are orthogonal and induct on m).
We prove the result by induction on m. When $m=1$ then any matrix is diagonal so we are done. Assume the result is true for all $m \times m$ upper-triangular matrices. We wish to prove it true for $(m+1) \times(m+1)$ upper-triangular matrices.
To that end we note that if $T \in \mathbb{C}^{(m+1) \times(m+1)}$ is upper triangular and unitary. Then the first column of T must be of the form $\mu \mathbf{e}_{1}$ (as T upper triangular) and the length of the first column is 1 (as T unitary) so $\mid \mu=1$. Since every other column of T is orthogonal to the first column (as T is unitary) T has the form

$$
T=\left[\begin{array}{cc}
\mu & 0 \\
0 & T^{\prime}
\end{array}\right] .
$$

Where $T^{\prime} \in \mathbb{C}^{m \times m}$ is upper triangular and unitary. In particular, by the induction hypthosis T^{\prime} is diagonal and hence so is T.
(b) Let

$$
A=\left[\begin{array}{cccc}
a_{11} & 0 & \cdots & 0 \\
0 & a_{22} & \cdots & 0 \\
\vdots & & \ddots & \vdots \\
0 & \cdots & 0 & a_{m m}
\end{array}\right] \in \mathbb{C}^{m \times m}
$$

be a diagonal matrix. Show that if A is unitary then $\left|a_{i i}\right|=1$ for $1 \leq i \leq m$.
Since the columns of a unitary matrix must be of unit length it is straightforward to see that $\left|a_{i i}\right|=1$.
(c) Let $X \in \mathbb{C}^{m \times m}$ be unitary, use parts a), b) and the Schur factorization to show that X is unitarily diagonalizable (i.e. \mathbb{C}^{m} has an orthonormal basis of eigenvectors) and that $\lambda \in \Lambda(X)$ implies $|\lambda|=1$.

Write the Schur factorization of X as

$$
X=Q T Q^{*}
$$

where $Q \in \mathbb{C}^{m \times m}$ is unitary and $T \in \mathbb{C}^{m \times m}$ is diagonal. For X to be unitary one has $X^{*}=X^{-1}$. On the one hand

$$
X^{*}=\left(Q T Q^{*}\right)^{*}=\left(Q^{*}\right)^{*} T^{*} Q^{*}=Q T^{*} Q
$$

on the other

$$
X^{-1}=\left(Q T Q^{*}\right)^{-1}=\left(Q^{*}\right)^{-1} T^{-1} Q^{-1}=Q T^{-1} Q^{*} .
$$

Hence T is unitary and so by a) and b) is diagonal with entries on the diagonal all of length 1. In all cases the diagonal entries of T are the eigenvalues of X and in this case the columns of Q are the eigenvectors of X and so we have proved the claim.
7. (30 points) Let $A \in \mathbb{R}^{3 \times 3}$ be the matrix

$$
A=\left[\begin{array}{ccc}
-3 & 2 & -2 \\
0 & 1 & 0 \\
2 & -1 & 2
\end{array}\right]
$$

(a) Find the eigenvalues of A and give their algebraic multiplicity.

By expanding along the middle column we see that the characteristic polynomial of A is:

$$
p_{A}(z)=\operatorname{det}(z I-A)=(z-1)((z+3)(z-2)-2(-2))=(z-1)\left(z^{2}+z-6+4\right) .
$$

By inspection (or using the quadratic formula) this can be factored as

$$
p_{A}(z)=(z-1)(z-1)(z+2) .
$$

Thus, the eigenvalues are $\lambda=-2$ with algebraic multiplicity 1 and $\lambda=1$ with algebraic multiplicity 2 .
(b) Verify that A is diagonalizable and find a basis of eigenvectors.

As

$$
A-(-2) I=\left[\begin{array}{ccc}
-1 & 2 & -2 \\
0 & 3 & 0 \\
2 & -1 & 4
\end{array}\right]
$$

we can do Gaussian elimination to see that an eigenvector associated to $\lambda=-2$ is

$$
\mathbf{x}_{1}=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
$$

Similarly, as

$$
A-I=\left[\begin{array}{ccc}
-4 & 2 & -2 \\
0 & 0 & 0 \\
2 & -1 & 1
\end{array}\right]
$$

Gaussian elimination shows that one has (linearly independent) eigenvectors

$$
\mathbf{x}_{2}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

one verifies that $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ form a linearly independent set and since $\operatorname{dim} \mathbb{C}^{3}=3$ they must form a basis.
(c) Determine the matrices X and Λ so that X is non-singular and Λ is diagonal and so one has a factorization:

$$
A=X \Lambda X^{-1}
$$

If we let

$$
X=\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

Using Gaussian elimination one computes

$$
X^{-1}=\frac{1}{3}\left[\begin{array}{ccc}
-1 & 2 & -2 \\
2 & -1 & 4 \\
-2 & 1 & -1
\end{array}\right]
$$

Hence using the fact that the columns of X are eigenvectors of A one has

$$
A=\frac{1}{3}\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{ccc}
-1 & 2 & -2 \\
2 & -1 & 4 \\
-2 & 1 & -1
\end{array}\right]
$$

(d) Compute $A^{n} \mathbf{e}_{1}$ for $n \geq 1$ an integer. Please simplify your answer as much as possible. Here

$$
\mathbf{e}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

As $A=X \Lambda X^{-1}$ one computes that

$$
A^{n}=X \Lambda^{n} X^{-1} .
$$

That is

$$
A^{n}=\frac{1}{3}\left[\begin{array}{ccc}
1 & 0 & -2 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & (-2)^{n}
\end{array}\right]\left[\begin{array}{ccc}
-1 & 2 & -2 \\
2 & -1 & 4 \\
-2 & 1 & -1
\end{array}\right]
$$

Hence,

$$
\begin{aligned}
A^{n} \mathbf{e}_{1} & =\frac{1}{3}\left[\begin{array}{llc}
1 & 0 & -2 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
2 \\
(-2)^{n+1}
\end{array}\right] \\
& =\frac{1}{3}\left[\begin{array}{c}
-1+(-2)^{n+2} \\
0 \\
2+(-2)^{n+1}
\end{array}\right]
\end{aligned}
$$

8. (30 points) Let $A \in \mathbb{R}^{2 \times 2}$ be the following matrix

$$
A=\left[\begin{array}{cc}
3 & 2 \\
1 & -2
\end{array}\right]
$$

Let $S_{p}=\left\{\mathbf{x} \in \mathbb{R}^{2}:\|\mathbf{x}\|_{p}=1\right\}$. Let $A S_{p}=\left\{A \mathbf{x} \in \mathbb{R}^{2}: \mathbf{x} \in S_{p}\right\}$. Here $1 \leq p \leq \infty$ and $\|\cdot\|_{p}$ is the p-norm on \mathbb{R}^{2}.
(a) Compute $\mu_{1}=\|A\|_{1}$ the induced 1-norm of A and $\mu_{\infty}=\|A\|_{\infty}$ the induced ∞-norm of A. Remember to justify your computation.

For a vector $\mathbf{x} \in S_{1}$ let us write $\mathbf{x}=\alpha \mathbf{e}_{1}+(1-\alpha) \mathbf{e}_{2}$ where we assume $0 \leq \alpha 1$ (so we assume \mathbf{x} in first quadrant, by symmetry this is enough). Then $A \mathbf{x}=(2+\alpha) \mathbf{e}_{1}+(-2+3 \alpha) \mathbf{e}_{2}$ then $\|A \mathbf{x}\|_{1}=|2+\alpha|+|-2-3 \alpha|$. When $\alpha>2 / 3$ this is equal to $2+\alpha-2+3 \alpha=4 \alpha$, while for $\alpha \leq 2 / 3$ this is equal to $2+\alpha+2-3 \alpha=4-2 \alpha$. Notice that this is maximized for $\alpha=0$ or $\alpha=1$ and has maximum value $\mu_{1}=4$.
For a vector $\mathbf{y} \in S_{\infty}$ let us write $\mathbf{y}=x \mathbf{e}_{1}+y \mathbf{e}_{1}$ where $x=1$ and $0 \leq y l e q 1$ or $y=1$ and $0 \leq x<1$ (so again we are in the first quadrant). Then $A \mathbf{y}=(3 x+2 y) \mathbf{e}_{1}+(x-2 y) \mathbf{e}_{2}$. Then $\|A y\|_{\infty}=\max \{|3 x+2 y|,|x-2 y|\}$. By inspection one sees that the maximum value is $\mu_{\infty}=5$.
(b) Determine all vectors $\mathbf{x}_{1} \in S_{1}$ and $\mathbf{x}_{\infty} \in S_{\infty}$ so that $\left\|A \mathbf{x}_{1}\right\|_{1}=\mu_{1}$ and $\left\|A \mathbf{x}_{\infty}\right\|_{\infty}=\mu_{\infty}$.

In the previous problem we see that \mathbf{x}_{1} can be any of the following and no other vectors:

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-1
\end{array}\right]
$$

In the previous problem we see that \mathbf{x}_{∞} can be any of the following and no other vectors:

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{l}
-1 \\
-1
\end{array}\right],
$$

(c) Sketch S_{1} and $A S_{1}$ and indicate the vectors \mathbf{x}_{1} and $A \mathbf{x}_{1}$ on your picture.
(d) Sketch S_{∞} and $A S_{\infty}$ and indicate the vectors \mathbf{x}_{∞} and $A \mathbf{x}_{\infty}$ on your picture.

