Mathematic 104, Fall 2010: Assignment \#1

Due: Wednesday, October 6th

Instructions: Please ensure that your answers are legible. Also make sure that all steps are shown - even for problems consisting of a numerical answer. Bonus problems cover advanced material and, while good practice, are not required and will not be graded.

Problem \#1. Consider the following 4 vectors:

$$
v_{1}=\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{l}
5 \\
2 \\
3
\end{array}\right], v_{4}=\left[\begin{array}{c}
10 \\
6 \\
4
\end{array}\right]
$$

Let $E=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$
a) Can the v_{j} form a basis for E ? Please justify your answer.
b) Determine $\operatorname{dim}(E)$.
c) Write down a matrix whose null space is E.
d) Find a vector w so that $\left\{v_{1}, v_{2}, w\right\}$ form a basis of \mathbb{C}^{3}.

Problem \#2. Let A and B be 2×2 matrices.
a) Find A and B so that $A B \neq B A$.
b) Now fix A, and suppose that we know that $A B=B A$ for every 2×2 matrix B. Show that A must be a multiple of the identity matrix i.e. of the form

$$
A=\left[\begin{array}{ll}
a & 0 \\
0 & a
\end{array}\right]=a I
$$

Problem \#3. Let $v_{1}, \ldots v_{k}$ be vectors in \mathbb{C}^{n}. If $w \in \mathbb{C}^{n}$ is not in $\operatorname{Span}\left\{v_{1}, \ldots, v_{k}\right\}$ what condition on the v_{i} ensures that $\left\{w, v_{1}, \ldots, v_{k}\right\}$ are linearly independent? Justify your answer.

Problem \#4. A matrix is said to be lower triangular if $a_{i j}=0$ for all $i<j$. Consider a generic 3×3 lower triangular matrix:

$$
A=\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21} & a_{22} & 0 \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

a) If all the terms are non-zero show that the only solution to $A v=0$ is $v=0$.
b) If $a_{22}=0$ give a non-zero vector in $\operatorname{Null}(A)$ and a vector not in $\operatorname{Range}(A)$.

Bonus Problem. Recall that in class we saw that we could associate to any complex number $z \in \mathbb{C}$ a vector $v \in \mathbb{R}^{2}$ as follows: write $z=a+I b$ for $a, b \in \mathbb{R}$ and let $v=a e_{1}+b e_{2}=\left[\begin{array}{l}a \\ b\end{array}\right]$. In a similar manner, to any vector $Z \in \mathbb{C}^{2}$ we can associate a vector in $V \in \mathbb{R}^{4}$:

$$
\text { write } Z=\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\left[\begin{array}{l}
a_{1}+I b_{1} \\
a_{2}+I b_{2}
\end{array}\right] \text { and set } V=\left[\begin{array}{l}
a_{1} \\
b_{1} \\
a_{2} \\
b_{2}
\end{array}\right]
$$

Now suppose that $Z^{\prime}=C Z$ where

$$
C=\left[\begin{array}{ll}
w_{11} & w_{12} \\
w_{21} & w_{22}
\end{array}\right]=\left[\begin{array}{ll}
c_{11}+I d_{11} & c_{12}+I d_{12} \\
c_{21}+I d_{21} & c_{22}+I d_{22}
\end{array}\right]
$$

is a 2×2 matrix with complex entries.
a) If V^{\prime} is the vector in \mathbb{R}^{4} associated to Z^{\prime}, find a 4×4 matrix, T, with real entries so $V^{\prime}=T V$.
b) Prove that T is non-singular if and only if C is non-singular.

