Mathematic 104, Fall 2010: Assignment \#2 (v2)

Due: Wednesday, October 13th

Instructions: Please ensure that your answers are legible. Also make sure that all steps are shown - even for problems consisting of a numerical answer. Bonus problems cover advanced material and, while good practice, are not required and will not be graded.

Problem \#1. Excercise 1.3 of Lecture 1 of Trefethen-Bau.
Problem \#2. Consider the following three vectors in \mathbb{C}^{3} :

$$
v_{1}=\left[\begin{array}{c}
3 I \\
0 \\
4
\end{array}\right], v_{2}=\left[\begin{array}{c}
4 \\
0 \\
3 I
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] .
$$

a) Show that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is an orthogonal set. Is this set orthonormal?
b) Let $X \in \mathbb{C}^{3 \times 3}$ be a matrix so that $X v_{1}=v_{2}+v_{3}, X v_{2}=-v_{2}$ and $X v_{3}=v_{1}+v_{2}+v_{3}$. Determine X. (Hint: Look for a natural orthonormal basis).

Problem \#3. Let v_{1}, v_{2} and v_{3} be vectors in \mathbb{C}^{3}. Determine a value $\lambda_{0} \in \mathbb{C}$ so that when $\lambda=\lambda_{0}$ the vectors $w_{1}=v_{1}+v_{2}, w_{2}=v_{1}-v_{3}$ and $w_{3}=\lambda v_{1}+v_{2}+v_{3}$ are never a basis of \mathbb{C}^{3}. When $\lambda \neq \lambda_{0}$ what condition on the $\left\{v_{i}\right\}$ is neccesary and sufficient so that the $\left\{w_{i}\right\}$ form a basis?

Problem \#4. Let u and v be two vectors in \mathbb{R}^{3} so that $\|u\|_{2}=5$ and $\|v\|_{2}=13$.
a) What are the largest and smallest values of $\|2 u+v\|_{2}$?
b) What are the largest and smallest values of $\langle u, v\rangle=u^{*} v$?

Problem \#5. Let Q be the following 4×4 matrix:

$$
Q=\left[\begin{array}{cccc}
\frac{3}{5} & 0 & 0 & q_{1} \\
0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & q_{2} \\
0 & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & q_{3} \\
\frac{4}{5} & 0 & 0 & q_{4}
\end{array}\right] \text { and denote by } q=\left[\begin{array}{l}
q_{1} \\
q_{2} \\
q_{3} \\
q_{4}
\end{array}\right] \text { the fourth column of } Q
$$

a) Assume $Q \in \mathbb{R}^{4 \times 4}$ determine all $q \in \mathbb{R}^{4}$ so that Q is orthogonal - that is $Q^{-1}=Q^{\top}$.
b) Assume instead that $Q \in \mathbb{C}^{4 \times 4}$ determine all $q \in \mathbb{C}^{4}$ so that Q is unitary - that is $Q^{-1}=Q^{*}$.

Bonus Problem. Verify some of the properties of the adjoint stated in class. Recall, we defined the adjoint by letting

$$
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right] \in \mathbb{C}^{m \times n} \text { and } B=\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 m} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n m}
\end{array}\right] \in \mathbb{C}^{n \times m}
$$

and saying B is the adjoint of A when and only when $b_{i j}=\bar{a}_{j i}$ and then writing $A^{*}=B$.
a) For $A \in \mathbb{C}^{m \times n}$ let $a_{i} \in \mathbb{C}^{m}$ be the columns of A, i.e. $A=\left[\begin{array}{lll}a_{1} \mid & \cdots & \mid a_{n}\end{array}\right]$ verify $A^{*}=\left[\begin{array}{c}a_{1}^{*} \\ \vdots \\ a_{n}^{*}\end{array}\right]$.
b) For $B \in \mathbb{C}^{m \times n}$ let $b_{i} \in \mathbb{C}^{1 \times n}$ be the rows of B that is $B=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{m}\end{array}\right]$ verify that $B^{*}=\left[\begin{array}{lll}b_{1}^{*} \mid & \cdots & \mid b_{m}^{*}\end{array}\right]$.
c) Check that $(A+B)^{*}=A^{*}+B^{*},(\lambda A)^{*}=\bar{\lambda} A^{*}$ and $\left(A^{*}\right)^{*}=A$ for $A, B \in \mathbb{C}^{m \times n}$ and $\lambda \in \mathbb{C}$. (Hint: Consder the rules for matrix additon and scalar multiplication as they apply to each entry).
d) Show that $(A B)^{*}=B^{*} A^{*}$ for $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times k}$. (Hint: Express the product in terms of columns and rows).
e) Show that $\langle A v, w\rangle=\left\langle v, A^{*} w\right\rangle$ for $v \in \mathbb{C}^{n}, w \in \mathbb{C}^{m}$ and $A \in \mathbb{C}^{m \times n}$.

